Through the PFOEP-SO3(-) + multidrug molecules constructed nanoparticle (NP) experiments and validated by molecular simulation docking experiments, we propose a molecular interaction principle for inducing aggregation-induced locally excited emission (AILE) luminescence from fluorenone (FO)-based conjugated polymers (CPs). Based on this molecular interaction mechanism, we constructed a NP built by π-π stacking. The NPs demonstrate facile synthesis, robust stability, and high drug-loading efficiency, enabling tumor-specific drug release in acidic lysosomal environments (pH 3.8-4.7) to minimize off-target toxicity. Concurrently, the PFOEPA NPs exhibit pH-dependent fluorescence enhancement: drug incorporation induces structural reorganization into a "sandwich" configuration, amplifying fluorescence with a blue shift under neutral/alkaline conditions, while acidic-triggered protonation collapse disrupts NPs. Moreover, it can be used as an indicator for monitoring drug release, as it is accompanied by changes in fluorescence during the drug release process. This NP possesses multiple functions and is expected to serve as an effective pH-responsive drug delivery system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsabm.4c02003 | DOI Listing |
J Biomater Appl
March 2025
Department of Chemistry, School of Pharmacy, North Sichuan Medical College, Nanchong, China.
Colorectal cancer is the fourth leading cause of cancer-related deaths worldwide. Capecitabine is a chemotherapeutic agent commonly used for the treatment of colon cancer. To realize local sustained release, promote efficient local intracellular transport, and mitigate the systemic toxic effects of capecitabine, a capecitabine prodrug, capecitabine-poly (p-dioxanone) (Cap-PPDO), was successfully synthesized.
View Article and Find Full Text PDFAdv Healthc Mater
March 2025
Molecular Diagnostic Center, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Hangzhou, 310006, China.
Due to the complexity of the tumor microenvironment (TME), current tumor treatments cannot achieve satisfactory results. A nanocomposite material, UCNPs@PVP-Hemin-GOx@CaCO (UPHGC NPs) is developed that responds to the TME and controls release to achieve multimodal synergistic therapy in tumor tissues. UPHGC NPs mediate photodynamic therapy (PDT), chemodynamic therapy (CDT), and starvation therapy (ST) synergistically, ultimately inducing self-amplification of ferroptosis.
View Article and Find Full Text PDFCells
February 2025
Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru 17012-901, Brazil.
The progression of COVID-19 involves a sophisticated and intricate interplay between the SARS-CoV-2 virus and the host's immune response. The immune system employs both innate and adaptive mechanisms to combat infection. Innate immunity initiates the release of interferons (IFNs) and pro-inflammatory cytokines, while the adaptive immune response involves CD4+ Th lymphocytes, B lymphocytes, and CD8+ Tc cells.
View Article and Find Full Text PDFJ Appl Biomater Funct Mater
March 2025
Department of Nanoscience and Nanotechnology, Erciyes University, Kayseri, Turkey.
For millennia, aloe vera (AV) and eucalyptus oil (EO) have been recognized as natural sources of healing and have been utilized for medicinal purposes in the realm of health. As an attempt to treat pressure sores, AV and eucalyptus oil were added as supplements to biocompatible and biodegradable poly (ethylene oxide) (PEO) polymer to synthesize nano and micro fibrous wound dressings by the electrospinning process. Additive solubility in polymeric matrix is the key parameter to achieve the synthesis of homogeneous fibers with controlled release of therapeutic oils, cure and humidity; therefore, lecithin as herbal (soybean) based emulsifier was used to control additive/polymer solubility.
View Article and Find Full Text PDFChem Commun (Camb)
March 2025
Department of Chemistry, Marburg University, Marburg, Germany.
We report how the conjugation of coelenterazine (CTZ) to BODIPY retains its activity as a versatile substrate for luciferase-type enzymes opening the possibility of taking advantage of BODIPY's fluorescent properties and capacity to generate singlet oxygen. Bioluminescence imaging-guided photodynamic therapy or O-triggered drug release are potential applications of these conjugates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!