Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Musashi-1 (MSI1) has been proposed as a potential prognostic biomarker in prostate cancer (PCa), but its role and underlying molecular mechanisms in PCa progression remain unclear. The mRNA and protein levels of MSI1 and α/β-hydrolase domain 2 (ABHD2) in PCa tissues and cells were examined using qRT-PCR and western blot. Cell proliferation, cycle, apoptosis, and migration were detected by EdU assay, flow cytometry and transwell assay. Glucose uptake and lactate production were assessed to measure cell glycolysis. The interaction between SP1 and PLA2G6 was evaluated using dual-luciferase reporter assay and ChIP assay. MSI1 had increased expression in PCa tissues and cells. MSI1 downregulation could repress PCa cell proliferation, cycle, migration, glycolysis, and enhanced apoptosis. ABHD2 was upregulated in PCa tissues and cells, and MSI1 could bind to ABHD2 promoter region to increase its expression. Knockdown of ABHD2 suppressed PCa cell growth, migration and glycolysis, and ABHD2 overexpression also abolished the effect of MSI1 downregulation on PCa cell progression. Furthermore, interference of MSI1 reduced PCa tumor growth by decreasing ABHD2 expression in vivo. MSI1 facilitated PCa cell proliferation, migration and glycolysis via activating ABHD2 transcription, providing a novel target for PCa treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10528-025-11079-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!