Photonic Chip Based on Ultrafast Laser-Induced Reversible Phase Change for Convolutional Neural Network.

Nanomicro Lett

State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, People's Republic of China.

Published: March 2025

Photonic computing has emerged as a promising technology for the ever-increasing computational demands of machine learning and artificial intelligence. Due to the advantages in computing speed, integrated photonic chips have attracted wide research attention on performing convolutional neural network algorithm. Programmable photonic chips are vital for achieving practical applications of photonic computing. Herein, a programmable photonic chip based on ultrafast laser-induced phase change is fabricated for photonic computing. Through designing the ultrafast laser pulses, the Sb film integrated into photonic waveguides can be reversibly switched between crystalline and amorphous phase, resulting in a large contrast in refractive index and extinction coefficient. As a consequence, the light transmission of waveguides can be switched between write and erase states. To determine the phase change time, the transient laser-induced phase change dynamics of Sb film are revealed at atomic scale, and the time-resolved transient reflectivity is measured. Based on the integrated photonic chip, photonic convolutional neural networks are built to implement machine learning algorithm, and images recognition task is achieved. This work paves a route for fabricating programmable photonic chips by designed ultrafast laser, which will facilitate the application of photonic computing in artificial intelligence.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40820-025-01693-5DOI Listing

Publication Analysis

Top Keywords

phase change
16
photonic computing
16
photonic
12
photonic chip
12
convolutional neural
12
integrated photonic
12
photonic chips
12
programmable photonic
12
chip based
8
based ultrafast
8

Similar Publications

In this study, the role of phosphorylation in the liquid-liquid phase separation (LLPS) of tau, the underlying driving forces, and the potential implications of this separation on protein conformation and subsequent protein aggregation were investigated. We compared in vivo-produced phosphorylated tau (p-tau) and nonphosphorylated tau under different coacervation conditions without adding crowding agents. Our findings revealed that spontaneous phase separation occurs exclusively in p-tau, triggered by a temperature shift from 4 °C to room temperature, and is driven by electrostatic and hydrophobic interactions.

View Article and Find Full Text PDF

Introduction: The developing brain, especially vulnerable during neuroplastic phases, is influenced by environmental and genetic factors. Understanding the impacts of air pollution on children's and young adults' mental health is an emerging research field.

Content: This review systematically examines the adverse associations of ambient air pollutants on mental health.

View Article and Find Full Text PDF

Integrating Genomic, Transcriptomic, and Phenotypic information to Explore Drug Resistance in Mycobacterium tuberculosis sub-lineage 4.2.2.2.

J Appl Microbiol

March 2025

Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Science, Addis Ababa University, P.O.Box 9086, Addis Ababa, Ethiopia.

Aims: Mycobacterium tuberculosis (Mtb) remains a major global health challenge, particularly due to increasing drug resistance. Beyond the well-characterized mutations, the mechanisms involved in driving resistance appear to be more complex. This study investigated the differential gene expression of Ethiopian drug-resistant Mtb sub-lineage 4.

View Article and Find Full Text PDF

Background: Electronic Health Records (EHRs) have significantly impacted healthcare improving access to patient information and enhancing communication among the health care team. However, lack of usability and increased documentation burden has greatly contributed to clinician burnout. Improvements in EHR design that include physician input is critical to develop specific changes that make EHRs less cumbersome; however, it can be challenging to gather input from physicians with full clinical workloads.

View Article and Find Full Text PDF

Mechanisms for absorption improvement of drugs with low water-solubility by self-microemulsifying drug delivery system (SMEDDS) are still controversial except for solubility improvement. We attempted to clarify the mechanisms by utilizing model drugs classified as biopharmaceutics classification system class II. In the in-vitro transport study for microemulsions (MEs) formed from SMEDDS, the permeation clearance (CL) calculated based on free drug concentrations in MEs, was significantly larger than the CL for aqueous solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!