Decidualization, the transformation of endometrial stromal cells into specialized decidual cells, is essential for embryo implantation and pregnancy maintenance. This process involves immune cell infiltration, especially decidual natural killer (dNK) cells, which regulate immune responses and support tissue remodeling. Recent findings suggest that cellular senescence during decidualization is not just a byproduct but plays a functional role in enhancing uterine receptivity. However, excessive senescence leads to complications like recurrent pregnancy loss. dNK cells help maintain decidual homeostasis by clearing senescent cells, preventing their harmful accumulation. The balance between dNK activity and decidual stromal cell (DSC) senescence is crucial for successful implantation and pregnancy outcomes. Disruption of this balance may contribute to pathological conditions. This review delves into the pivotal roles of dNK cells in decidual senescence regulation and discusses therapeutic strategies targeting senescence to improve pregnancy outcomes, and new approaches for treating reproductive disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00281-025-01048-7 | DOI Listing |
Semin Immunopathol
March 2025
Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
Decidualization, the transformation of endometrial stromal cells into specialized decidual cells, is essential for embryo implantation and pregnancy maintenance. This process involves immune cell infiltration, especially decidual natural killer (dNK) cells, which regulate immune responses and support tissue remodeling. Recent findings suggest that cellular senescence during decidualization is not just a byproduct but plays a functional role in enhancing uterine receptivity.
View Article and Find Full Text PDFGenes (Basel)
November 2024
Kh. Dosmukhamedov Atyrau University, Atyrau 060000, Kazakhstan.
This study investigates the Y-chromosome genetic diversity of the Turkmen population in Turkmenistan, analyzing 23 Y-STR loci for the first time in a sample of 100 individuals. Combined with comparative data from Turkmen populations in Afghanistan, Iran, Iraq, Russia, and Uzbekistan, this analysis offers insights into the genetic structure and relationships among Turkmen populations across regions across Central Asia and the Near East. High haplotype diversity in the Turkmen of Turkmenistan is shaped by founder effects (lineage expansions) from distinct haplogroups, with haplogroups Q and R1a predominating.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance.
View Article and Find Full Text PDFStem Cell Reports
January 2025
Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA. Electronic address:
Human induced pluripotent stem cell (iPSC)-derived alveolar organoids have emerged as a system to model the alveolar epithelium in homeostasis and disease. However, alveolar organoids are typically grown in Matrigel, a mouse sarcoma-derived basement membrane matrix that offers poor control over matrix properties, prompting the development of synthetic hydrogels as a Matrigel alternative. Here, we develop a two-step culture method that involves pre-aggregation of organoids in hydrogel-based microwells followed by embedding in a synthetic hydrogel that supports alveolar organoid growth, while also offering considerable control over organoid and hydrogel properties.
View Article and Find Full Text PDFMol Cell Biochem
December 2024
Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Qilu Hospital of Shandong University, No.44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
In patients with recurrent pregnancy loss (RPL), excessive activation of decidual natural killer (dNK) cells has been widely observed, yet the precise underlying mechanisms remain to be elucidated. We collected decidual specimens from RPL patients and controls to assess GRIM19 expression, activation phenotype, cytotoxic function, inflammatory cytokine secretion, and mitochondrial homeostasis in dNK cells. Furthermore, we established a GRIM19-knockout NK-92MI cell line and a GRIM19 ± C57BL/6J mouse model to investigate the relationship between GRIM19 downregulation and dNK immune dysregulation, ultimately contributing to pregnancy loss.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!