Unlabelled: Congenital diaphragmatic hernia (CDH) has high morbidity and mortality rates. This study aimed to develop a machine learning (ML) algorithm to predict outcomes based on prenatal and early postnatal data. This retrospective observational cohort study involved infants with left-sided CDH, born from 2012 to 2020. We analyzed clinical and imaging data using three classification algorithms: XGBoost, Support Vector Machine, and K-Nearest Neighbors. Medical records of 165 pregnant women with CDH fetal diagnosis were reviewed. According to inclusion criteria, 50 infants with isolated left-sided CDH were enrolled. The mean o/eLHR was 37.32%, and the average gestational age at delivery was 36.5 weeks. Among these infants, 26 (52%) had severe persistent neonatal pulmonary hypertension (PPHN), while 24 (48%) had moderate or mild form; 37 survived (74%), and 13 did not (26%). The XGBoost model achieved 88% accuracy and 95% sensitivity for predicting mortality using ten features and 82% accuracy for PPHN severity with 14 features. The area under the ROC curve was 0.87 for mortality and 0.82 for PPHN severity.

Conclusion: ML models show promise in predicting CDH outcomes and supporting clinical decisions. Future research should focus on more extensive studies to refine these algorithms and improve care management.

Clinical Trial Registration: NCT04609163.

What Is Known: • Congenital diaphragmatic hernia (CDH) is a serious condition characterized by high morbidity and mortality rates, making it critical to predict neonatal outcomes for effective clinical management accurately. • Traditional prenatal diagnostic methods often struggle to predict complications such as Neonatal Persistent Pulmonary Hypertension (PPHN) in CDH, highlighting the need for innovative predictive approaches.

What Is New: • Machine learning (ML) models, particularly XGBoost, have been shown to accurately forecast mortality and the severity of PPHN in infants with CDH based on prenatal and early postnatal clinical and imaging data. • ML-based predictive models can enhance prenatal counseling, optimize birth planning, and tailor postnatal care for patients with CDH, enabling real-time risk assessment and adaptive management strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00431-025-06073-0DOI Listing

Publication Analysis

Top Keywords

machine learning
12
pulmonary hypertension
12
congenital diaphragmatic
12
diaphragmatic hernia
12
cdh
9
neonatal persistent
8
persistent pulmonary
8
retrospective observational
8
observational cohort
8
cohort study
8

Similar Publications

Background: Processing data from electronic health records (EHRs) to build research-grade databases is a lengthy and expensive process. Modern arthroplasty practice commonly uses multiple sites of care, including clinics and ambulatory care centers. However, most private data systems prevent obtaining usable insights for clinical practice.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) leads to rapid physiological and functional decline before causing untimely death. Current best-practice approaches to interdisciplinary care are unable to provide adequate monitoring of patients' health. Passive in-home sensor systems enable 24×7 health monitoring.

View Article and Find Full Text PDF

AI-Driven Discovery of Highly Specific and Efficacious hCES2A Inhibitors for Ameliorating Irinotecan-Triggered Gut Toxicity.

J Med Chem

March 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

The anticancer agent irinotecan often induces severe delayed-onset diarrhea, inhibiting human carboxylesterase 2A (hCES2A) can significantly alleviate irinotecan-triggered gut toxicity (ITGT). This work presents an efficient workflow for design and developing novel efficacious hCES2A inhibitors. A well-training machine learning model identified as a lead compound, while compound was developed as a novel time-dependent hCES2A inhibitor (IC = 0.

View Article and Find Full Text PDF

Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures.

View Article and Find Full Text PDF

Background: Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin.

Objective: In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!