In this study, the biological applications of cultivation methods related to cultivar selection, vegetative growth, and reproductive development in Lentinula edodes cultivation are briefly reviewed to clarify the current situation and inform future developments. The current cultivars widely used in the main production areas are derived from wild strains distributed in northern Asia. The most effective techniques for cultivar identification are molecular markers identified in two nuclear genome datasets and one mitochondrial genome dataset. The current stage of cultivar breeding is at the junction of Breeding 3.0 (biological breeding) and Breeding 4.0 (intelligent breeding). Plant breeder's rights and patents have different emphases on new breeding variety protection, with the former being the most utilized globally. L. edodes is mostly produced on synthetic logs filled with sawdust substrates. Hardwood sawdust comprises approximately 80% of the substrates. The vegetative growth of L. edodes on synthetic logs involves two distinct stages of mycelial colonization and browning. Mycelia mainly perform glycolysis, tricarboxylic acid cycle, and respiratory metabolism reactions to produce energy and intermediates for synthesizing the structural components of hyphae in the vegetative colonization stage. Upon stimulation by physiological and environmental pressures after colonization, mycelia trigger gluconeogenesis, autophagy, and secondary metabolism, increase metabolic flux of pentose phosphate pathway, activate the glyoxylate cycle, and accumulate melanin on the surface of logs to ensure growth and survival. Sexually competent mycelia can form hyphal knots as a result of reprogrammed hyphal branching patterns after a period of vegetative growth (which varies by cultivar) and stimulation by specific environmental factors. Under a genetically encoded developmental program, hyphal knots undergo aggregation, tissue differentiation, primordium formation, meiosis in the hymenium, stipe elongation, basidiospore production and maturation, and cap expansion to form mature fruiting bodies. Growers can achieve good fruiting body shape and high yield by regulating the number of young fruiting bodies and adjusting specific environmental factors. KEY POINTS: • Cultivar selection becomes less with the increasing technological requirement of L. edodes cultivation. • L. edodes mycelia showed different biological events in the mycelial colonization and browning stages. • Specific cultivar breading may be the next milestone in L. edodes cultivation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00253-024-13387-w | DOI Listing |
Front Plant Sci
February 2025
State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China.
The opening of cotton bolls is an important characteristic that influences the precocity of cotton. In the field, farmers often use chemical defoliants to induce cotton leaves to fall off earlier, thus accelerating the cracking of cotton bolls. However, the molecular mechanism of cotton boll cracking remains unclear.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
March 2025
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P. R. China.
In this study, the biological applications of cultivation methods related to cultivar selection, vegetative growth, and reproductive development in Lentinula edodes cultivation are briefly reviewed to clarify the current situation and inform future developments. The current cultivars widely used in the main production areas are derived from wild strains distributed in northern Asia. The most effective techniques for cultivar identification are molecular markers identified in two nuclear genome datasets and one mitochondrial genome dataset.
View Article and Find Full Text PDFBiol Direct
March 2025
Laboratory of Molecular Biology, Cluster Plant Developmental Biology, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
Background: Tulipa gesneriana reproduces vegetatively by the development of bulb clusters from axillary meristems in the scales of a mother bulb. While part of the daughter bulbs in a cluster develop into large, flowering bulbs, others stay small and vegetative under the same environmental conditions. This study aims to investigate how these different developmental fates are orchestrated.
View Article and Find Full Text PDFPLoS One
March 2025
Center of Data Science, Queensland University of Technology, Brisbane, Queensland, Australia.
Climate change impacts require us to reexamine crop growth and yield under increasing temperatures and continuing yearly climate variability. Agronomic and agro-meteorological variables were concorded for a large number of plantings of green bean (Phaseolus vulgaris L.) in three growing seasons over several years from semi-tropical Queensland.
View Article and Find Full Text PDFFront Plant Sci
February 2025
Department of Food Testing, Binzhou Testing Center, Binzhou, Shandong, China.
Introduction: The three-amino-acid-loop-extension (TALE) of the homeobox superfamily genes plays important roles in plant growth, development, and responses to environmental stress. Although TALE members have been identified in various species, they have not been systematically characterized in maize and their expression profiles under ABA hormone and abiotic stress are unknown.
Methods: Bioinformatics methods were employed to identify the TALE family genes in the maize genome.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!