Objective: Clinical investigators have hypothesized that interictal epileptiform discharges (IEDs) generated by hypothalamic hamartoma (HH) lead to cognitive dysfunction in patients with drug-resistant gelastic seizures. Herein we provide causal evidence supporting this hypothesis by demonstrating that excitatory neural bursts, when propagating from the HH to the mediodorsal thalamus during the encoding period, impair working memory.

Methods: By employing channelrhodopsin-2 photostimulation, we induced excessive neural excitation in Long-Evans rats, resembling IEDs, at the axon terminals of the lateral hypothalamus projecting toward the mediodorsal thalamus and prelimbic cortex. We recorded local field potentials (LFPs) at these sites and assessed the performance of working memory tasks with and without photostimulation. Utilizing support vector machine analysis on LFP trials under sham photostimulation, we identified the neural correlates of successful task performance. Through mixed model analyses, we evaluated the impacts of photostimulation timing and the alteration in LFP amplitude induced by photostimulation on task performance.

Results: Ten rats completed operant conditioning using a spout lever system after receiving an average of 70.7 days of training, at a rate of 135.2 trials per day. During sham photostimulation, successful trials were associated with a shorter duration of the working memory maintenance period, as well as an augmentation in the 10- to 14-Hz LFP amplitude at the mediodorsal thalamus and prelimbic cortex during the memory encoding phase. Photostimulation at the mediodorsal thalamus during encoding reduced the odds of a trial being successful by 0.19. Conversely, excessive mediodorsal thalamus LFP augmentation induced by photostimulation during encoding increased the odds of a trial being unsuccessful by 1.04.

Significance: Excessive neural excitation, specifically propagating from the lateral hypothalamus to the mediodorsal thalamus during encoding, alters physiological neural activity and transiently impairs working memory. This study clarifies the pathophysiological mechanism underlying cognitive disabilities associated with working memory impairment in HH-related epileptic encephalopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/epi.18321DOI Listing

Publication Analysis

Top Keywords

mediodorsal thalamus
24
working memory
16
thalamus encoding
12
photostimulation
8
excessive neural
8
neural excitation
8
lateral hypothalamus
8
thalamus prelimbic
8
prelimbic cortex
8
sham photostimulation
8

Similar Publications

Objective: Clinical investigators have hypothesized that interictal epileptiform discharges (IEDs) generated by hypothalamic hamartoma (HH) lead to cognitive dysfunction in patients with drug-resistant gelastic seizures. Herein we provide causal evidence supporting this hypothesis by demonstrating that excitatory neural bursts, when propagating from the HH to the mediodorsal thalamus during the encoding period, impair working memory.

Methods: By employing channelrhodopsin-2 photostimulation, we induced excessive neural excitation in Long-Evans rats, resembling IEDs, at the axon terminals of the lateral hypothalamus projecting toward the mediodorsal thalamus and prelimbic cortex.

View Article and Find Full Text PDF

Animals adaptively regulate aversive memories in safe environments through extinction, a process central to exposure therapy for anxiety disorders. The limbic thalamus controls cognitive function in concert with interconnected cortical and limbic structures. Though medial prefrontal (mPFC) afferents to the limbic thalamus regulate aversive memory, the functional role of limbic thalamus efferents to mPFC is unclear.

View Article and Find Full Text PDF

Observational fear (OF) is the ability to vicariously experience and learn from another's fearful situation, enabling adaptive responses crucial for survival. It has been shown that the anterior cingulate cortex (ACC) and basolateral amygdala (BLA) are crucial for OF. A subset of neurons in the ACC is activated when observing aversive events in the demonstrator, which elicits OF.

View Article and Find Full Text PDF

Introduction: Frontotemporal dementia involves progressive atrophy in deep gray matter nuclei, including the thalamus and basal ganglia (such as the caudate, putamen, nucleus accumbens, and globus pallidus), which are critical for cognition and behavior. This study examined cross-sectional and longitudinal atrophy using a state-of-the-art multi-atlas segmentation method sTHOMAS.

Methods: T1-weighted MRI scans from 274 participants at baseline and 237 at follow-up obtained from the Frontotemporal Lobar Degeneration Neuroimaging Initiative database were analyzed using sTHOMAS.

View Article and Find Full Text PDF

Ultra-high field fMRI reveals effect of ketamine on vocal processing in common marmosets.

J Neurosci

February 2025

Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON N6A 5K8, Canada.

Auditory deficits are a well-known symptom in neuropsychiatric disorders such as schizophrenia. The non-competitive N-methyl-D-aspartate receptor antagonist ketamine has been used to model sensory and cognitive deficits in nonhuman primates, but its whole-brain effects remain largely unknown. Here we employed ultra-high-field fMRI at 9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!