Thrombotic events, such as strokes and deep vein thrombosis, remain a significant global health burden, with traditional diagnostic methods often failing to capture the complex, patient-specific nuances of thrombosis risk. This Perspective explores the revolutionary potential of microengineered vessel-on-chip platforms in thrombosis research and personalized medicine. We discuss the evolution from basic microfluidic channels to advanced 3D-printed, patient-specific models that accurately replicate complex vascular geometries, incorporating all elements of Virchow's triad. Integrating these platforms with cutting-edge sensing technologies, including wearable ultrasonic devices and electrochemical biosensors, enables real-time monitoring of thrombosis-related parameters. Crucially, we highlight the transformative role of artificial intelligence and digital twin technology in leveraging vast patient-specific data collected from these models. This integration allows for the development of predictive algorithms and personalized digital twins, offering unprecedented thrombosis risk assessment, treatment optimization, and drug screening capabilities. The clinical relevance and validation of these models are examined, showcasing their potential to predict thrombotic events and guide personalized treatment strategies. While challenges in scalability, standardization, and regulatory approval persist, the convergence of vessel-on-chip platforms, advanced sensing, and AI-driven digital twins promises to revolutionize thrombosis management. This approach paves the way for a new era of precision cardiovascular care, offering noninvasive, predictive, and personalized strategies for thrombosis prevention and treatment, ultimately improving patient outcomes and reducing the global burden of cardiovascular diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c02764DOI Listing

Publication Analysis

Top Keywords

digital twins
12
thrombosis management
8
ai-driven digital
8
thrombotic events
8
thrombosis risk
8
vessel-on-chip platforms
8
thrombosis
7
sensing future
4
future thrombosis
4
management integrating
4

Similar Publications

Atrial fibrillation (AF) is one of the most common cardiac diseases and a complicating comorbidity for multiple associated diseases. Many clinical decisions regarding AF are currently based on the binary recognition of AF being present or absent with the categorical appraisal of AF as continued or intermittent. Assessment of AF in clinical trials is largely limited to the time to (first) detection of an AF episode.

View Article and Find Full Text PDF

The history around teleoperation and deployment of robotic systems in constrained and dangerous environments such as nuclear is a long and successful one. From the 1940s, robotic manipulators have been used to manipulate dangerous substances and enable work in environments either too dangerous or impossible to be operated by human operators. Through the decades, technical and scientific advances have improved the capabilities of these devices, whilst allowing for more tasks to be performed.

View Article and Find Full Text PDF

In this paper, a set of mathematical tools are developed and assembled to quantify, predict and virtually assess NO emission mitigation strategies in partial nitritation (PN) / anammox (ANX) granular based reactors. The proposed approach is constructed upon a set of data pre-treatment methods, process simulation models, control tools (and algorithms) and key performance indicators to analyze, reproduce, and forecast the behavior of multiple operational variables within aerobic granular sludge systems. All these elements are tested on two full-scale data sets (#D1, #D2) collected over a period of four months (Sept-Dec 2023).

View Article and Find Full Text PDF

Thrombotic events, such as strokes and deep vein thrombosis, remain a significant global health burden, with traditional diagnostic methods often failing to capture the complex, patient-specific nuances of thrombosis risk. This Perspective explores the revolutionary potential of microengineered vessel-on-chip platforms in thrombosis research and personalized medicine. We discuss the evolution from basic microfluidic channels to advanced 3D-printed, patient-specific models that accurately replicate complex vascular geometries, incorporating all elements of Virchow's triad.

View Article and Find Full Text PDF

Objective 3D virtual models have gained interest in urology, particularly in the context of robotic partial nephrectomy. From these, newly developed "anatomical digital twin models" reproduce both the morphological and anatomical characteristics of the organs, including the texture of the tissues they comprise. The aim of the study was to develop and test the new digital twins in the setting of intraoperative guidance during robotic-assisted partial nephrectomy (RAPN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!