Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The mitotic spindle, which uses microtubules (MTs) and MT-based motor proteins to separate sister chromosomes prior to cell division, contains abundant membranes, organelles, and protein assemblies derived from the familiar interphase intracellular membrane network. In this essay, mainly with reference to selected animal and fungal cells, I summarize current ideas about the reciprocal functional relationship between these mitotic spindle-associated membranes and the spindle MT cytoskeleton, in which; 1) spindle membranes control the composition, Ca ion concentration and mechanical performance of the spindle MT cytoskeleton; and conversely 2) the spindle MT cytoskeleton contributes to membrane/organelle partitioning and inheritance during cell division and serves as a reservoir of membranes, organelles, and vesicles for delivery to the interphase cytoplasm, plasma membrane, and cleavage furrow.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1091/mbc.E24-10-0475 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!