The autophagy-lysosomal system comprises a highly dynamic and interconnected vesicular network that plays a central role in maintaining proteostasis and cellular homeostasis. In this study, we uncovered the deubiquitinating enzyme (DUB), dUsp45/USP45, as a key player in regulating autophagy and lysosomal activity in Drosophila and mammalian cells. Loss of dUsp45/USP45 results in autophagy activation and increased levels of V-ATPase to lysosomes, thus enhancing lysosomal acidification and function. Furthermore, we identified the actin-binding protein Coronin 1B (Coro1B) as a substrate of USP45. USP45 interacts with and deubiquitinates Coro1B, thereby stabilizing Coro1B levels. Notably, the ablation of USP45 or Coro1B promotes the formation of F-actin patches and the translocation of V-ATPase to lysosomes in an N-WASP-dependent manner. Additionally, we observed positive effects of dUsp45 depletion on extending lifespan and ameliorating polyglutamine (polyQ)-induced toxicity in Drosophila. Our findings highlight the important role of dUsp45/USP45 in regulating lysosomal function by modulating actin structures through Coro1B.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1083/jcb.202407014 | DOI Listing |
J Cell Biol
May 2025
Institute of Biological Chemistry, Academia Sinica , Taipei, Taiwan.
The autophagy-lysosomal system comprises a highly dynamic and interconnected vesicular network that plays a central role in maintaining proteostasis and cellular homeostasis. In this study, we uncovered the deubiquitinating enzyme (DUB), dUsp45/USP45, as a key player in regulating autophagy and lysosomal activity in Drosophila and mammalian cells. Loss of dUsp45/USP45 results in autophagy activation and increased levels of V-ATPase to lysosomes, thus enhancing lysosomal acidification and function.
View Article and Find Full Text PDFAutophagy
March 2025
Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Cardiac dysfunction is a serious complication of sepsis-induced multiorgan failure in intensive care units and is characterized by an uncontrolled immune response to overwhelming infection. Type 2 innate lymphoid cells (ILC2s), as a part of the innate immune system, play a crucial role in the inflammatory process of heterogeneous cardiac disorders. However, the role of ILC2 in regulating sepsis-induced cardiac dysfunction and its underlying mechanism remain unknown.
View Article and Find Full Text PDFJ Biol Chem
March 2025
Dept. of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY. Electronic address:
V-ATPases are highly conserved ATP-driven rotary proton pumps found widely among eukaryotes that are composed of two subcomplexes: V and V. V-ATPase activity is regulated in part through reversible disassembly, during which V physically separates from V and both subcomplexes become inactive. Reassociation of V to V reactivates the complex for ATP-driven proton pumping and organelle acidification.
View Article and Find Full Text PDFCNS Neurosci Ther
March 2025
Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
Introduction: Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive impairment that currently is incurable. There is existing evidence to suggest that vacuolar adenosine triphosphatase (v-ATPase) is one of the early key driving factors in the pathological process of AD. Thus, early intervention of v-ATPase may be a viable strategy.
View Article and Find Full Text PDFJ Neuromuscul Dis
March 2025
Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
X-linked myopathy with excessive autophagy (XMEA) is a rare neuromuscular disorder caused by mutations in the gene, encoding a chaperone protein present in the endoplasmic reticulum (ER). In yeast and human, VMA21 has been shown to chaperone the assembly of the vacuolar (v)-ATPase proton pump required for the acidification of lysosomes and other organelles. In line with this, VMA21 deficiency in XMEA impairs autophagic degradation steps, which would be key in XMEA pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!