Regularly updated benchmark sets for statistically correct evaluations of AlphaFold applications.

Brief Bioinform

Institute of Molecular Life Sciences Research, Centre for Natural Sciences, Magyar Tudósok Körútja, Budapest, Hungary.

Published: March 2025

AlphaFold2 changed structural biology by providing high-quality structure predictions for all possible proteins. Since its inception, a plethora of applications were built on AlphaFold2, expediting discoveries in virtually all areas related to protein science. In many cases, however, optimism seems to have made scientists forget about data leakage, a serious issue that needs to be addressed when evaluating machine learning methods. Here we provide a rigorous benchmark set that can be used in a broad range of applications built around AlphaFold2/3.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbaf104DOI Listing

Publication Analysis

Top Keywords

applications built
8
regularly updated
4
updated benchmark
4
benchmark sets
4
sets statistically
4
statistically correct
4
correct evaluations
4
evaluations alphafold
4
alphafold applications
4
applications alphafold2
4

Similar Publications

Semiconductor devices often rely on high-purity materials and interfaces achieved through vapor- and vacuum-based fabrication methods, which can enable precise compositional control down to single atomic layers. Compared to groups IV and III-V semiconductors, hybrid perovskites (HPs) are an emergent class of semiconductor materials with remarkable solution processability and compositional variability that have facilitated rapid experimentation to achieve new properties and progress toward efficient devices, particularly for solar cells. Surprisingly, vapor deposition techniques for HPs are substantially less developed, despite the complementary benefits that have secured vapor methods as workhorse tools for semiconductor fabrication.

View Article and Find Full Text PDF

Hybrid multicompartment artificial architectures, inherited from different compartmental systems, possess separate microenvironments that can perform different functions. Herein, a hybrid compartmentalized architecture via hybridizing ferritin nanocage (Fn) with non-aqueous droplets using aminated-modified amphiphilic gelatin (AGEL) is proposed, which enables the generation of compartmentalized emulsions with hybrid multicompartments. The resulting compartmentalized emulsions are termed "hybrasome".

View Article and Find Full Text PDF

MoSe/BiSe Heterostructure Immobilized in N-Doped Carbon Nanosheets Assembled Flower-Like Microspheres for High-Rate Sodium Storage.

Small

March 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.

A key challenge for sodium-ion batteries (SIBs) lies in identifying suitable host materials capable of accommodating large Na ions while addressing sluggish chemical kinetics. The unique interfacial effects of heterogeneous structures have emerged as a critical factor in accelerating charge transfer and enhancing reaction kinetics. Herein, MoSe/BiSe composites integrated with N-doped carbon nanosheets are synthesized, which spontaneously self-assemble into flower-like microspheres (MoSe/BiSe@N-C).

View Article and Find Full Text PDF

Background And Aims: Lymph node metastasis plays a crucial role in determining the appropriate treatment approach for patients with gastric cancer (GC), particularly those in the T1-T2 stage. Currently available diagnostic strategies for GC with lymph nodes have limited accuracy. The present research aimed to create and validate diagnostic and prognostic nomograms specifically tailored for the T1-T2 stage GC patients with LNM.

View Article and Find Full Text PDF

Metabolic growth-coupling strategies for enzyme selection systems.

Metab Eng Commun

June 2025

The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800, Kgs. Lyngby, Denmark.

Whole-cell biocatalysis facilitates the production of a wide range of industrially and pharmaceutically relevant molecules from sustainable feedstocks such as plastic wastes, carbon dioxide, lignocellulose, or plant-based sugar sources. The identification and use of efficient enzymes in the applied biocatalyst is key to establishing economically feasible production processes. The generation and selection of favorable enzyme variants in adaptive laboratory evolution experiments using growth as a selection criterion is facilitated by tightly coupling enzyme catalytic activity to microbial metabolic activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!