Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding genetic regulation of metabolism is critical for gaining insights into the causes of metabolic diseases. Traditional metabolome-based genome-wide association studies (mGWAS) focus on static associations between single nucleotide polymorphisms (SNPs) and metabolite levels, overlooking the changing relationships caused by genotypes within the metabolic network. Notably, some metabolites exhibit changes in correlation patterns with other metabolites under certain physiological conditions while maintaining their overall abundance level. In this manuscript, we develop Metabolic Differential-coordination GWAS (mdGWAS), an innovative framework that detects SNPs associated with the changing correlation patterns between metabolites and metabolic pathways. This approach transcends and complements conventional mean-based analyses by identifying latent regulatory factors that govern the system-level metabolic coordination. Through comprehensive simulation studies, mdGWAS demonstrated robust performance in detecting SNP-metabolite-metabolite associations. Applying mdGWAS to genotyping and mass spectrometry (MS)-based metabolomics data of the METabolic Syndrome In Men (METSIM) Study revealed novel SNPs and genes potentially involved in the regulation of the coordination between metabolic pathways.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bib/bbaf095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!