A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 500 Internal Server Error

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GEMDiff: a diffusion workflow bridges between normal and tumor gene expression states: a breast cancer case study. | LitMetric

GEMDiff: a diffusion workflow bridges between normal and tumor gene expression states: a breast cancer case study.

Brief Bioinform

Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, United States.

Published: March 2025

Breast cancer remains a significant global health challenge due to its complexity, which arises from multiple genetic and epigenetic mutations that originate in normal breast tissue. Traditional machine learning models often fall short in addressing the intricate gene interactions that complicate drug design and treatment strategies. In contrast, our study introduces GEMDiff, a novel computational workflow leveraging a diffusion model to bridge the gene expression states between normal and tumor conditions. GEMDiff augments RNAseq data and simulates perturbation transformations between normal and tumor gene states, enhancing biomarker identification. GEMDiff can handle large-scale gene expression data without succumbing to the scalability and stability issues that plague other generative models. By avoiding the need for task-specific hyper-parameter tuning and specific loss functions, GEMDiff can be generalized across various tasks, making it a robust tool for gene expression analysis. The model's ability to augment RNA-seq data and simulate gene perturbations provides a valuable tool for researchers. This capability can be used to generate synthetic data for training other machine learning models, thereby addressing the issue of limited biological data and enhancing the performance of predictive models. The effectiveness of GEMDiff is demonstrated through a case study using breast mRNA gene expression data, identifying 307 core genes involved in the transition from a breast tumor to a normal gene expression state. GEMDiff is open source and available at https://github.com/xai990/GEMDiff.git under the MIT license.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbaf093DOI Listing

Publication Analysis

Top Keywords

gene expression
24
normal tumor
12
gene
9
tumor gene
8
expression states
8
breast cancer
8
case study
8
study breast
8
machine learning
8
learning models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!