The human gut microbiota and uric acid metabolism: genes, metabolites, and diet.

Crit Rev Food Sci Nutr

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China.

Published: March 2025

Hyperuricemia (HUA), characterized by an excessive production of uric acid (UA), poses a significant risk for various metabolic disorders and affects over one billion individuals globally. The intricate interplay between the gut microbiota and dietary constituents plays a pivotal role in maintaining UA homeostasis. Abnormal consumption of specific dietary components such as purines, fructose, or aberrant expression of urate transporters can disrupt UA balance, precipitating HUA and gout. The gut microbiota exerts profound influence over human UA regulation, particularly in the presence of specific gene clusters. Individuals with HUA often exhibit gut dysbiosis, characterized by a reduction in bacteria producing short-chain fatty acids or those capable of degrading UA, alongside an increase in opportunistic pathogens. Dietary constituents and their microbial metabolites engage in intricate interactions with the gut microbiota to modulate HUA, regulating inflammatory responses, suppressing xanthine oxidase activity to curtail UA production, and enhancing UA excretion via urate transporters. This comprehensive review delineates the pivotal role of dietary factors in UA metabolism and HUA, elucidating the underlying mechanisms of microbial regulation. By unraveling the intricate connections between the gut microbiota and UA metabolism, it offers valuable dietary guidance for individuals grappling with HUA.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408398.2025.2475238DOI Listing

Publication Analysis

Top Keywords

gut microbiota
20
uric acid
8
dietary constituents
8
pivotal role
8
urate transporters
8
hua
6
microbiota
5
gut
5
dietary
5
human gut
4

Similar Publications

Aging and neurodegeneration: when systemic dysregulations affect brain macrophage heterogeneity.

J Immunol

March 2025

INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France.

Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration.

View Article and Find Full Text PDF

B cell depletion is an efficacious therapy for multiple sclerosis, but its long-term safety profile in the gastrointestinal tract has not been specifically studied. This is of importance because the gut is the largest reservoir of IgA in the body, which maintains gut homeostasis in part by regulating the composition of the gut microbiota. This was addressed by development of a prolonged B cell depletion model using human CD20 transgenic mice and B cell depletion with the anti-human CD20 antibodies rituximab, a humanized mouse monoclonal, and 2H7, the mouse precursor to ocrelizumab.

View Article and Find Full Text PDF

Disrupted microbial cross-feeding and altered L-phenylalanine consumption in people living with HIV.

Brief Bioinform

March 2025

Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, United States.

This work aims to (1) identify microbial and metabolic alterations and (2) reveal a shift in phenylalanine production-consumption equilibrium in individuals with HIV. We conducted extensive searches in multiple databases [MEDLINE, Web of Science (including Cell Press, Oxford, HighWire, Science Direct, IOS Press, Springer Nature, PNAS, and Wiley), Google Scholar, and Embase] and selected two case-control 16S data sets (GenBank IDs: SRP039076 and EBI ID: ERP003611) for analysis. We assessed alpha and beta diversity, performed univariate tests on genus-level relative abundances, and identified significant microbiome features using random forest.

View Article and Find Full Text PDF

The gut-kidney axis is the bidirectional relationship between the gut microbiota and the kidney function. Chronic inflammatory responses can impair kidney function and probiotics and postbiotics agents can have positive effects on gut health and kidney function by modulating inflammation through affecting autophagy signaling pathway. The aim of the current study was to evaluate the properties of our probiotic and postbiotics to improve kidney health by focusing the autophagy signaling pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!