carbapenemases (KPCs) have evolved into over 245 distinct variants, with over one-third of variants exhibiting reduced susceptibility to ceftazidime-avibactam, while the underlying selection mechanisms remain elusive. To better elucidate these resistant phenotypes, we cloned 33 clinically described KPC variants (from KPC-2 to KPC-36) and 8 artificially created variants into a common plasmid vector and assessed their impact on β-lactam susceptibility. Strains expressing KPC-14, KPC-28, and KPC-31 exhibited increased resistance to ceftazidime and ceftazidime-avibactam but decreased resistance to carbapenems. We further studied the catalytic mechanism of β-lactam hydrolysis by KPC-4, KPC-14, KPC-15, KPC-16, KPC-21, KPC-25, KPC-28, KPC-31, and the ancestral KPC-2 and KPC-3 enzymes. Antimicrobial susceptibility test, enzyme kinetics, and molecular modeling revealed diverse selective pressures, including but not limited to aztreonam and ceftriaxone, driving KPC evolution, with ceftazidime playing a central role. Substitutions within the KPC hydrolytic active sites notably reduced the inhibitory effect of avibactam on KPC, demonstrated by isothermal titration calorimetry analysis, resulting in enhanced hydrolysis of ceftazidime by enzyme kinetics. This highlights that avibactam may serve as an additional driving force in KPC evolution.IMPORTANCEThe rapid evolution of KPC carbapenemases, including resistance to ceftazidime-avibactam, threatens the effectiveness of last-resort antibiotics against infections, necessitating understanding of of the underlying selection pressures. This study investigates the evolutionary mechanisms driving KPC diversification and resistance to ceftazidime-avibactam, providing crucial information for developing effective strategies to combat carbapenem-resistant (CRKP) infections and preserve antibiotic efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1128/msystems.00184-25DOI Listing

Publication Analysis

Top Keywords

β-lactam susceptibility
8
underlying selection
8
kpc-28 kpc-31
8
enzyme kinetics
8
driving kpc
8
resistance ceftazidime-avibactam
8
kpc
7
resistance
5
diverse evolutionary
4
evolutionary trajectories
4

Similar Publications

While several African swine fever virus (ASFV)-encoded proteins potently interfere with the cGAS-STING (cyclic GMP-AMP synthetase-stimulator of interferon genes) pathway at different levels to suppress interferon (IFN) type I production in infected macrophages, systemic IFN-α is induced during the early stages of AFSV infection in pigs. The present study elucidates a mechanism by which such responses can be triggered, at least in vitro. We demonstrate that infection of monocyte-derived macrophages (MDMs) by ASFV genotype 2 strains is highly efficient but immunologically silent with respect to IFN type I, IFN-stimulated gene induction, and tumor necrosis factor production.

View Article and Find Full Text PDF

Precise motif and cross-presentation of coronavirus peptides by feline MHC class I: implications for the mild infection of SARS-CoV-2.

J Immunol

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.

As one of the earliest identified susceptible animals for the SARS-CoV-2, cats are also the vulnerable hosts for feline coronaviruses, ie feline enteric coronavirus (FECV). Here, to understand the cross-presentation of coronavirus-derived peptides by cat major histocompatibility complex molecule feline leucocyte antigen (FLA) class I, unpredictable natural peptide motifs presented by FLA-K*00701 and FLA-E*00301 were identified through peptide elution and further confirmed by the structural determination of the 2 FLA class I molecules. Based on these precise motifs of FLA class I peptides, the atlas of cross-presenting peptides from different coronaviruses in cats were sketched with 3 hotspots in C-terminal half of ORF1ab protein.

View Article and Find Full Text PDF

Citrus fruits, known for their vibrant flavours and health benefits, are susceptible to fungal attacks, particularly from toxigenic fungi, which pose a significant pre- and post-harvest hazard. However, aromatic oils and their nanoparticles may effectively address this issue. Marjoram and fennel oils, alongside their nanoparticles, were extracted, and their aromatic constituents and antimicrobial activities were evaluated.

View Article and Find Full Text PDF

Splenic red pulp macrophages eliminate the liver-resistant from the blood circulation of mice.

Sci Adv

March 2025

Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China.

Invasive infections by encapsulated bacteria are the major cause of human morbidity and mortality. The liver resident macrophages, Kupffer cells, form the hepatic firewall to clear many encapsulated bacteria in the blood circulation but fail to control certain high-virulence capsule types. Here we report that the spleen is the backup immune organ to clear the liver-resistant serotypes of (pneumococcus), a leading human pathogen.

View Article and Find Full Text PDF

Proteasomal processing of the viral replicase ORF1 facilitates HEV-induced liver fibrosis.

Proc Natl Acad Sci U S A

March 2025

Department of Hepatobiliary and Pancreatic Surgery and Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.

Chronic infections with hepatitis E virus (HEV), especially those of genotype 3 (G3), frequently lead to liver fibrosis and cirrhosis in patients. However, the causation and mechanism of liver fibrosis triggered by chronic HEV infection remain poorly understood. Here, we found that the viral multiple-domain replicase (ORF1) undergoes unique ubiquitin-proteasomal processing leading to formation of the EV-erived MAD ctivator (HDSA), a viral polypeptide lacking putative helicase and RNA polymerase domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!