Regulating Crystallization for Pure-Iodide 1.68 eV Bandgap Perovskite Solar Cells with a Fill Factor over 86.

ACS Nano

Institute of Photoelectronic Thin Film Devices and Technology, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300350, P. R. China.

Published: March 2025

Mixed halide wide-bandgap (WBG) perovskites, widely used as a top-cell absorber in tandem solar cells, exhibit severe photoinduced halide phase segregation. A feasible solution is to exploit pure-iodide WBG perovskites, essentially increasing Cs content instead of Br to achieve bandgap widening. However, the efficiency of pure-iodine WBG perovskite solar cells (PSCs) reported so far has been inferior to that of the typical mixed halide WBG PSCs due to complex nucleation and phase transition processes, leading to poor crystallization quality and a high density of defect states in pure-iodine WBG perovskites. Here, by combining lead thiocyanate (Pb(SCN)) and oleylamine hydrochloride (OAmCl) with the CsDMAMAPbI perovskite precursor, a homogeneous phase distribution is obtained, resulting in enhanced crystallization and a reduction of excess lead source defects. With this approach, the resulting film quality is improved along with fewer surface-bulk defects as well as beneficial surface electronic properties. As a result, the pure-iodide WBG PSCs deliver a high efficiency of 21.55%, an extremely high fill factor of 86.03%, and superior photostability. The target film is fundamentally free of phase segregation under continuous light for 12 h (AM 1.5 G illumination, xenon lamp, 1 sun).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c18395DOI Listing

Publication Analysis

Top Keywords

solar cells
12
wbg perovskites
12
perovskite solar
8
fill factor
8
mixed halide
8
phase segregation
8
pure-iodide wbg
8
pure-iodine wbg
8
wbg pscs
8
wbg
6

Similar Publications

A Structurally Simple Polymer Donor Enables High-Efficiency Organic Solar Cells with Minimal Energy Losses.

Angew Chem Int Ed Engl

March 2025

South China University of Technology, State Key Laboratory of Luminescent Materials and Devices, Wushan Road 381, 510640, Guangzhou, CHINA.

Energy loss (Eloss) between optical energy gap (Eg) and open-circuit voltage (eVoc) sets efficiency upper limits for organic solar cells (OSCs). Nevertheless, further breaking the limit of Eloss in OSCs is challenging, especially via structurally simple materials in binary OSCs. Herein, a structurally simple non-halogenated polymer donor, namely PBDCT, is developed for realizing high-efficiency OSCs with record-breaking Eloss.

View Article and Find Full Text PDF

Developing vapor-solid reaction methods to prepare organic-inorganic hybrid perovskite thin films is highly compatible with processes in crystalline silicon solar cells and the thin-film photovoltaic industries, facilitating rapid industrialization. In the vapor-solid reaction, the crystallization quality of perovskite thin films is widely influenced by the crystallinity and microstructure of lead iodide (PbI) precursor films. During the thermal evaporation process of preparing the PbI precursor films, we observed that PbI tends to develop a disordered surface morphology and exhibits high crystallinity, which significantly hinders the uniform diffusion of the organic amine salt vapor during the subsequent vapor-solid reaction.

View Article and Find Full Text PDF

We report the cosolvency effect of formamidinium lead triiodide (FAPbI) in a mixture of γ-butyrolactone (GBL) and 2-methoxyethanol (2ME), a phenomenon where FAPbI shows higher solubility in the solvent blend than in either alone. We found that FAPbI exhibits 10× higher solubility in 30% 2ME in GBL than in 2ME alone and 40% higher solubility than in GBL alone at 90 °C. This enhanced solubility is attributed to the disruption of the hydrogen bonding network within 2ME, allowing its hydroxyl and ether groups to interact more freely with the solute.

View Article and Find Full Text PDF

Copper-Catalyzed -Heteroannulation of [60]Fullerene with Aryl Sulfonamides and Paraformaldehyde: Synthesis and Functionalization of [60]Fullerene-Fused Imidazolidines.

Org Lett

March 2025

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, People's Republic of China.

The Cu(II)-catalyzed -heteroannulation reaction of [60]fullerene (C) with aryl sulfonamides and paraformaldehyde has been disclosed for the synthesis of diverse C-fused imidazolidines, of which one or both of the ArSO moieties could be removed selectively. Further transformations into the unexpected bicyclic 1,2,3,4-adduct and C-fused imidazolidinium iodide salt have also been demonstrated. A plausible reaction mechanism is proposed on the basis of control experiments.

View Article and Find Full Text PDF

Semiconductor devices often rely on high-purity materials and interfaces achieved through vapor- and vacuum-based fabrication methods, which can enable precise compositional control down to single atomic layers. Compared to groups IV and III-V semiconductors, hybrid perovskites (HPs) are an emergent class of semiconductor materials with remarkable solution processability and compositional variability that have facilitated rapid experimentation to achieve new properties and progress toward efficient devices, particularly for solar cells. Surprisingly, vapor deposition techniques for HPs are substantially less developed, despite the complementary benefits that have secured vapor methods as workhorse tools for semiconductor fabrication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!