Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is one of the most widespread infectious diseases, with nearly 2 billion people infected globally. We present an innovative approach for the real-time detection of TB antigens Mpt64 and Ag85B using DNA aptamers in combination with a graphene oxide (GO)-assisted optical microfiber super-sensor. The high surface-to-volume ratio and superior properties of the GO layer significantly enhance the microfiber's fixation capabilities. To validate the clinical applicability of this sensing method, we employed the optical sensor to successfully detect Mpt64 and Ag85B in serum samples within 10 s, achieving limits of detection of 4.23 × 10⁻²⁰ M and 3.11 × 10⁻¹⁹ M, respectively. Due to the high conservation of Mpt64 and Ag85B in human and bovine MTB strains, our detection system can be used to identify MTB in both humans and bovine. These results demonstrate the sensor's high sensitivity for quantifying MTB particles, enabling rapid identification of infected individuals or bovine. Overall, the optical microfiber sensor system offers a promising platform for diagnosing MTB due to its straightforward detection scheme and potential for miniaturization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.28929 | DOI Listing |
Biotechnol Bioeng
April 2025
Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is one of the most widespread infectious diseases, with nearly 2 billion people infected globally. We present an innovative approach for the real-time detection of TB antigens Mpt64 and Ag85B using DNA aptamers in combination with a graphene oxide (GO)-assisted optical microfiber super-sensor. The high surface-to-volume ratio and superior properties of the GO layer significantly enhance the microfiber's fixation capabilities.
View Article and Find Full Text PDFFront Microbiol
January 2025
Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Republic of Korea.
Introduction: The inadequate efficacy of the Bacillus Calmette-Guérin (BCG) vaccine against adult pulmonary tuberculosis (TB) necessitates the development of new and effective vaccines. Human adenovirus serotype 5 (Ad5), which induces T-cell response, is a widely used viral vector. In this study, we aimed to evaluate the efficacy of a multi-antigenic recombinant Ad5 vectored vaccine and determine the optimal immunization route for enhanced immune response against .
View Article and Find Full Text PDFFront Immunol
December 2024
Korea National Institute of Health, Korea Disease Control and Prevention Agency, CheongJu, Republic of Korea.
As Bacille Calmette-Guérin (BCG) vaccine's effectiveness is limited to only children, the development of new tuberculosis (TB) vaccines is being studied using several platforms, and a novel TB vaccine that overcomes this limitation is required. In this study, we designed an effective multi-epitope vaccine against using immunoinformatic analysis. First, we selected 11 highly antigenic proteins based on previous research: Ag85A, Ag85B, Ag85C, ESAT-6, MPT64, Rv2660c, TB10.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2024
Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
The diagnosis of mycobacterial infections, including both the Mycobacterium tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), poses a significant global medical challenge. This study proposes a novel approach using immunochromatographic (IC) strip tests for the simultaneous detection of MTBC and NTM. Traditional methods for identifying mycobacteria, such as culture techniques, are hindered by delays in distinguishing between MTBC and NTM, which can affect patient care and disease control.
View Article and Find Full Text PDFFront Med (Lausanne)
October 2023
Institute for Infection and Immunity, St George's University of London, London, United Kingdom.
Serological antibody profiling of tuberculosis (TB) patients and household contacts with latent TB infection (LTBI) could identify risk indicators of disease progression, and potentially also serve as an easily accessible diagnostic tool to discriminate between these two stages of () infection. Yet, despite significant efforts over many decades, neither application has yet fully materialised, and this is at least in part due to inconsistent and varying antibody profiles from different TB endemic regions. In this study, we conducted a retrospective exploratory analysis of serum antibodies in a cohort of active TB patients (ATB) and their interferon-gamma release assay (IGRA) positive household contacts (LTBI), as well as healthy controls (HC) from Mozambique, a country with a high TB burden from the Sub-Saharan region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!