Artificial Intelligence Technology Assists Enzyme Prediction and Rational Design.

J Agric Food Chem

The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214126, China.

Published: March 2025

Since the structure of enzymes determines their function, elucidating the structure of enzymes lays a solid foundation for deciphering their catalytic mechanism and enabling rational design. The development of artificial intelligence (AI) has sparked a technological revolution, infusing new vitality into theoretical studies of enzymology and the advancement of enzyme engineering techniques. This Review outlines the development process and main methods of AI applied in the structural elucidation and functional prediction of enzymes. Furthermore, it emphasizes AI-based rational design of enzymes and provides a detailed exposition of representative AI algorithms and case studies. With the support of AI technology, the comprehension of enzyme structure and function and their relationship will become deeper and more efficient, thereby promoting the widespread application of enzyme engineering in various fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.4c13201DOI Listing

Publication Analysis

Top Keywords

rational design
12
artificial intelligence
8
structure enzymes
8
enzyme engineering
8
intelligence technology
4
technology assists
4
enzyme
4
assists enzyme
4
enzyme prediction
4
prediction rational
4

Similar Publications

Protein evolution has shaped enzymes that maintain stability and function across diverse thermal environments. While sequence variation, thermal stability and conformational dynamics are known to influence an enzyme's thermal adaptation, how these factors collectively govern stability and function across diverse temperatures remains unresolved. Cytosolic malate dehydrogenase (cMDH), a citric acid cycle enzyme, is an ideal model for studying these mechanisms due to its temperature-sensitive flexibility and broad presence in species from diverse thermal environments.

View Article and Find Full Text PDF

Tuning transition metal spin states potentially offers a powerful means to control electrocatalyst activity. However, implementing such a strategy in electrochemical CO reduction (COR) is challenging since rational design rules have yet to be elucidated. Here we show how the addition of P dopants to a ferromagnetic element (Fe, Co, and Ni) single-atom catalyst (SAC) can shift its spin state.

View Article and Find Full Text PDF

Porous titanium implants are becoming an important tool in orthopedic clinical applications. This review provides a comprehensive survey of recent advances in porous titanium implants for orthopedic use. First, the review briefly describes the characteristics of bone and the design requirements of orthopedic implants.

View Article and Find Full Text PDF

Starch-based nanocomposites (SNCs) are at the forefront of innovations in food science, offering unparalleled opportunities for enhancing the stability, bioactivity, and overall functionality of food systems. This review delves into the potential of SNCs to address contemporary challenges in food formulation, focusing on the synergistic effects of their components. By integrating cutting-edge technologies, such as artificial intelligence (AI) and nuclear magnetic resonance (NMR), we explore new avenues for enhancing the precision, predictability, and functionality of SNCs.

View Article and Find Full Text PDF

Miniscrews are used in orthodontic treatment and can be applied immediately after implantation, making their initial stability crucial. However, clinical reports show that the success rate is not 100%, and many researchers have tried to identify the factors influencing success and optimize designs. A review of the literature reveals that studies on the same geometric parameter of miniscrews using different indicators and different brand samples have led to conflicting results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!