Janus particles, with their intrinsic asymmetry, are attracting major interest in various applications, including emulsion stabilization, micro/nanomotors, imaging, and drug delivery. In this context, Janus polymersomes are particularly attractive for synthetic cell development and drug delivery systems. While they can be achieved by inducing a phase separation within their membrane, their fabrication method remains largely empirical. Here, we propose a rational approach, using Flory-Huggins theory, to predict the self-assembly of amphiphilic block copolymers into asymmetric Janus polymersomes. Our predictions are experimentally validated by forming highly stable Janus giant unilamellar vesicles (JGUVs) with a remarkable yield exceeding 90% obtained from electroformation of various biocompatible block copolymers. We also present a general phase diagram correlating mixing energy with polymersome morphology, offering a valuable tool for JGUV design. These polymersomes can be extruded to achieve quasi-monodisperse vesicles while maintaining their Janus-like morphology, paving the way for their asymmetric functionalization and use as active carriers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c18003DOI Listing

Publication Analysis

Top Keywords

phase separation
8
drug delivery
8
janus polymersomes
8
block copolymers
8
janus
5
janus polymeric
4
polymeric giant
4
giant vesicles
4
vesicles demand
4
demand predictive
4

Similar Publications

Insight into the Specific Adsorption of Cu(II) by a Zinc-Based Metal-Organic Framework Mediated via a Proton-Exchange Mechanism.

Langmuir

March 2025

China Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.

In the context of scarce metal resources, the one-step separation and recovery of high-value copper metal ions from secondary resources is of significant importance and presents substantial challenges. This study identified a Zn-based triazole MOF (Zn(tr)(OAc)) with accessible and noncoordinated terminal hydroxyl groups within its framework. The Zn(tr)(OAc) surpasses most currently reported Cu-specific MOF adsorbents regarding adsorption capacity and Cu selectivity.

View Article and Find Full Text PDF

In this study, the role of phosphorylation in the liquid-liquid phase separation (LLPS) of tau, the underlying driving forces, and the potential implications of this separation on protein conformation and subsequent protein aggregation were investigated. We compared in vivo-produced phosphorylated tau (p-tau) and nonphosphorylated tau under different coacervation conditions without adding crowding agents. Our findings revealed that spontaneous phase separation occurs exclusively in p-tau, triggered by a temperature shift from 4 °C to room temperature, and is driven by electrostatic and hydrophobic interactions.

View Article and Find Full Text PDF

The efficient removal of CO from exhaust streams and even directly from air is necessary to forestall climate change, lending urgency to the search for new materials that can rapidly capture CO at high capacity. The recent discovery that diamine-appended metal-organic frameworks can exhibit cooperative CO uptake via the formation of ammonium carbamate chains begs the question of whether simple organic polyamine molecules could be designed to achieve a similar switch-like behavior with even higher separation capacities. Here, we present a solid molecular triamine, 1,3,5-tris(aminomethyl)benzene (TriH), that rapidly captures large quantities of CO upon exposure to humid air to form the porous, crystalline, ammonium carbamate network solid TriH(CO)·HO (TriHCO).

View Article and Find Full Text PDF

Oxygen-excluded nanoimaging of polymer blend films.

Sci Adv

March 2025

Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea.

Polymer blend films exhibit unique properties and have applications in various fields. However, understanding their nanoscale structures and polymer component distributions remains a challenge. To address this limitation, we have developed a super-resolution fluorescence microscopy-based technique called oxygen-excluded nanoimaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!