Expression of S100β during mouse cochlear development.

Eur J Histochem

Otolaryngology & Head and Neck Center, Cancer Center, Department of Otolaryngology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou.

Published: January 2025

In the present study, the expression of S100β was examined in the mouse cochlea from embryonic day 17 (E17) to postnatal day 32 (P32) using immunofluorescence, aiming to explore its possible role in auditory system. At E17, S100β expression was not detected, except in the external cochlear wall. Starting at E18.5, S100β staining appeared in the organ of Corti and the stria vascularis. In the E18.5 and P1 organ of Corti, S100β was confined to the developing pillar cells. By P6, cytoplasmic staining of S100β was evident in the inner and outer pillar cells, forming the tunnel of Corti. Additionally, S100β expression extended medially into the three rows of Deiter's cells, with labeling of their phalangeal processes. At P8, S100β continued to be expressed in the heads, bodies, and feet of the two pillar cells, as well as in the soma and phalangeal processes of the three rows of Deiter's cells. In the lateral wall of the P8 cochlea, S100β was expressed not only in the stria vascularis but also in the spiral ligament. Between P10 and P12, S100β expression was maintained in the Deiter's cells and pillar cells of the organ of Corti, as well as in the lateral wall, and spiral limbus. From P14 onwards, S100β expression ceased in the stria vascularis, though it persisted in the spiral ligament and spiral limbus into adulthood. Within the P14 and P21 organ of Corti, S100β remained in the Deiter's and pillar cells. S100β immunostaining was not observed in the phalangeal processes of Deiter's cells but was specifically present in the Deiter's cell cups at P21. In the adult cochlea (P28 and P32), S100β expression declined in both Deiter's and pillar cells. The dynamic spatiotemporal changes in S100β expression during cochlear ontogeny suggest its role in cochlear development and hearing function.

Download full-text PDF

Source
http://dx.doi.org/10.4081/ejh.2025.4189DOI Listing

Publication Analysis

Top Keywords

s100β expression
24
pillar cells
24
organ corti
16
deiter's cells
16
s100β
14
stria vascularis
12
phalangeal processes
12
cells
10
expression
8
expression s100β
8

Similar Publications

Semiautomated Production of Cell-Free Biosensors.

ACS Synth Biol

March 2025

Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Cell-free synthetic biology biosensors have potential as effective diagnostic technologies for the detection of chemical compounds, such as toxins and human health biomarkers. They have several advantages over conventional laboratory-based diagnostic approaches, including the ability to be assembled, freeze-dried, distributed, and then used at the point of need. This makes them an attractive platform for cheap and rapid chemical detection across the globe.

View Article and Find Full Text PDF

Background: Telenursing has become prevalent in providing care to diverse populations experiencing different health conditions both in Israel and globally. The nurse-patient relationship aims to improve the condition of individuals requiring health services.

Objectives: This study aims to evaluate nursing graduates' skills and knowledge regarding remote nursing care prior to and following a simulation-based telenursing training program in an undergraduate nursing degree.

View Article and Find Full Text PDF

Detoxifying reactive oxygen species (ROS) that accumulate under saline conditions is crucial for plant salt tolerance. The Salt Overly Sensitive (SOS) pathway functions upstream, while flavonoids act downstream, in ROS scavenging under salt stress. However, the potential crosstalk between the SOS pathway and flavonoids in regulating salt stress responses and the associated mechanisms remain largely unexplored.

View Article and Find Full Text PDF

It is known that inhibition of the endoplasmic reticulum transmembrane signaling protein (ERN1) suppresses the glioblastoma cells proliferation. The present study aims to investigate the impact of inhibition of ERN1 endoribonuclease and protein kinase activities on the , , and gene expression in U87MG glioblastoma cells with an intent to reveal the role of ERN1 signaling in the regulation of expression of these genes. The U87MG glioblastoma cells with inhibited ERN1 endoribonuclease (dnrERN1) or both enzymatic activities of ERN1 (endoribonuclease and protein kinase; dnERN1) were used.

View Article and Find Full Text PDF

For the effective growth of malignant tumors, including glioblastoma, the necessary factors involve endoplasmic reticulum (ER) stress, hypoxia, and the availability of nutrients, particularly glucose. The ER degradation enhancing alpha-mannosidase like protein 1 (EDEM1) is involved in ER-associated degradation (ERAD) targeting misfolded glycoproteins for degradation in an N-glycan-independent manner. EDEM1 was also identified as a new modulator of insulin synthesis and secretion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!