Organic electrochemical transistors (OECTs) are seen as some of the most promising devices in organic bioelectronics. Recent interest in OECTs is sparked by the high performance of an organic semiconductor channel material, i.e., poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The capability of ion penetration and charge transport of the channel determines the performance of the OECTs. However, the uniform structure of the PEDOT:PSS channel always makes it difficult to achieve a well-balanced between the two functions. Here, we report a novel PEDOT:PSS film with a vertical phase separation structure (VPSS-P), where PSS accumulates at the surface, and PEDOT enriches at the bottom of the film. Such a unique structure improves the electrochemical stability and reduces the contact resistance, significantly enhancing OECT performance with high transconductance (70.5 mS), product of mobility (μ) and volumetric capacitance (*) (μ* ∼ 479 F cm V s), and ultralow contact resistance (∼0.79 Ω cm). Flexible OECT devices with VPSS-P show robust performance against deformation. Our findings highlight a new class of high-performance transistors and provide guidelines for designing state-of-the-art channel materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c01311 | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Materials Science and Engineering, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
This study investigates the enhancement of organic light-emitting diode (OLED) performance through the integration of titanium dioxide (TiO) nanocomposites within a poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) matrix. The nanocomposite films were prepared using a controlled dispersion of TiO belts into the PEDOT/PSS solution, followed by their incorporation into the OLED hole-injection layer (HIL). Our results demonstrate a significant improvement in device efficiency, attributed to the optimized charge carrier mobility and reduced recombination losses, which were achieved by the presence of TiO.
View Article and Find Full Text PDFSci Rep
January 2025
Physics Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
An electro- and optically favorable quaternary nanocomposite film was produced by solution-casting nickel oxide nanoparticles (NiO NPs) into polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS). Based on transmission electron microscopy (TEM) and X-ray diffraction (XRD) observations, the synthesized NiO NPs have a cubic phase and a diameter between 10 and 45 nm. The complexity and interactions observed through XRD patterns, UV-visible spectra, and FTIR measurements suggest that the NPs are not just dispersed within the polymer matrix, but are interacting with it, leading to enhanced dielectric properties and AC electrical conductivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
School of Advanced Materials and School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China.
ACS Appl Mater Interfaces
May 2024
Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-0052, Japan.
Carbon nanotube (CNT) films are extensively researched as a promising material for wearable thermoelectric generators (TEGs) owing to their good flexibility and high thermoelectric conversion ability. Miniaturizing a pair of p- and n-type thermocouples and increasing the number of repeating elements can effectively increase the power of TEGs. However, conventional p-n patterning methods, such as dipping and printing, have a coarse resolution at the submillimeter level, thereby limiting the miniaturization rate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara 44121, Italy.
Supercapacitors offer notable properties as energy storage devices, providing high power density and fast charging and discharging while maintaining a long cycling lifetime. Although poly(3,4-ethylenedioxythiophene) doped with poly(4-styrenesulfonate) (PEDOT/PSS) has become a gold standard among organic electronics materials, researchers are still investigating ways to further improve its capacitive characteristics. In this work, we introduced Nafion as an alternative polymeric counterion to PSS to form highly capacitive PEDOT/Nafion; its advantageous supercapacitive properties were further improved by treatment with either dimethyl sulfoxide or ethylene glycol.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!