Role of the oxide in memristive quasi-1D silicon nanowires.

Nanoscale

Bio/CMOS Interfaces Lab, Institute of Electrical and Micro Engineering, Engineering Faculty, École Polytechnique Fédérale de Lausanne, Rue de la Maladiere 71b, Neuchatel, 2000, Switzerland.

Published: March 2025

Memristors are garnering significant attention due to their high similarity to biological neurons and synapses, alongside their unique physical mechanisms. Biosensors exhibiting memristive behaviour have demonstrated substantial efficacy in detecting therapeutic and biological compounds in the past decade. This report investigates silicon nanowire (SiNW)-based devices incorporating Schottky barriers, which exhibit potential for memristive behaviour. The SiNWs are fabricated between two nickel (Ni) pads, defined as 1.5 μm in length and 90 nm in width, then forming a quasi-one-dimensional (1D) back-to-back Schottky diode structure due to their large aspect ratio. After oxygen plasma treatment of the SiNW, this back-to-back diode structure begins to exhibit memristive behaviour. Our experimental data indicate that this behaviour is induced by superficial oxygen along the SiNW and is influenced by the contacts within the Schottky barrier and the intermediate silicon oxide layer. Furthermore, we have developed a mathematical model derived from the thermal emission equation of Schottky diodes to accurately characterize and understand this memristive behaviour. Thanks to this model, it is possible to accurately fine-tune the design of memristive devices for application in neuromorphic computing and memristive biosensing.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d5nr00104hDOI Listing

Publication Analysis

Top Keywords

memristive behaviour
16
diode structure
8
memristive
7
behaviour
5
role oxide
4
oxide memristive
4
memristive quasi-1d
4
quasi-1d silicon
4
silicon nanowires
4
nanowires memristors
4

Similar Publications

Resistive switching (RS) memory devices with incorporated capabilities of data sensing, storing and processing are promising for artificial intelligence applications. In this respect, controlling resistance not only by electrical but also optical stimulations provides attractive opportunities for the development of novel neuromorphic sensing and computing systems. Here, we demonstrate the RS of Cu/parylene-PbTe/ITO memristive devices and the dependence of RS on optical excitation for efficient neuromorphic computing with high classification accuracy.

View Article and Find Full Text PDF

Electrolyte Gated Transistors for Brain Inspired Neuromorphic Computing and Perception Applications: A Review.

Nanomaterials (Basel)

February 2025

School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.

Emerging neuromorphic computing offers a promising and energy-efficient approach to developing advanced intelligent systems by mimicking the information processing modes of the human brain. Moreover, inspired by the high parallelism, fault tolerance, adaptability, and low power consumption of brain perceptual systems, replicating these efficient and intelligent systems at a hardware level will endow artificial intelligence (AI) and neuromorphic engineering with unparalleled appeal. Therefore, construction of neuromorphic devices that can simulate neural and synaptic behaviors are crucial for achieving intelligent perception and neuromorphic computing.

View Article and Find Full Text PDF

Role of the oxide in memristive quasi-1D silicon nanowires.

Nanoscale

March 2025

Bio/CMOS Interfaces Lab, Institute of Electrical and Micro Engineering, Engineering Faculty, École Polytechnique Fédérale de Lausanne, Rue de la Maladiere 71b, Neuchatel, 2000, Switzerland.

Memristors are garnering significant attention due to their high similarity to biological neurons and synapses, alongside their unique physical mechanisms. Biosensors exhibiting memristive behaviour have demonstrated substantial efficacy in detecting therapeutic and biological compounds in the past decade. This report investigates silicon nanowire (SiNW)-based devices incorporating Schottky barriers, which exhibit potential for memristive behaviour.

View Article and Find Full Text PDF

Bioinspired ion-shuttling memristor with both neuromorphic functions and ion selectivity.

Proc Natl Acad Sci U S A

March 2025

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

The fluidic memristor has attracted growing attention as a promising candidate for neuromorphic computing and brain-computer interfaces. However, a fluidic memristor with ion selectivity as that of natural ion channels remains a key challenge. Herein, inspired by the structure of natural biomembranes, we developed an ion-shuttling memristor (ISM) by utilizing organic solvents and artificial carriers to emulate ion channels embedded in biomembranes, which exhibited both neuromorphic functions and ion selectivity.

View Article and Find Full Text PDF

With the recent upsurge of data-driven technology, the demand for storage elements has pushed the researchers to explore design of nobel nonvolatile memory devices with diverse functionalities. However, the management of electronic waste has become a prominent challenge due to the rapid growth of the solid-state electronics industry. Biomaterial-based Resistive Random Access Memory (Bio-RRAM) has become one of the most promising devices that can augment the quality of memory devices because of their environmentally benign behavior, biocompatible, nontoxic, transient, transferable, flexible, dissolvable, and biodegradable nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!