Multifunctional Liposomes with Enhanced Stability for Imaging-Guided Cancer Chemodynamic and Photothermal Therapy.

ACS Biomater Sci Eng

Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China.

Published: March 2025

Improvements in tumor therapy require a combination of strategies where targeted treatment is critical. We developed a new versatile nanoplatform, MA@E, that generates high levels of reactive oxygen species (ROS) with effective photothermal conversions in the removal of tumors. Enhanced stability liposomes were employed as carriers to facilitate the uniform distribution and stable storage of encapsulated gold nanorods (AuNRs) and Mn-MIL-100 metal-organic frameworks, with efficient delivery of MA@E to the cytoplasm. In the targeted phagocytosis of tumor cells, MA@E can effectively deplete the reduced glutathione (GSH) with increased hydroxyl radicals that combine with Mn released from Mn-MIL-100 to trigger Fenton-like reactions, generating ROS that induces cell apoptosis. Exposure to near-infrared (NIR-II) irradiation results in a AuNRs-induced thermogenic effect that expedites the release of Mn and promotes Fenton-like reactions, achieving increased production of OH. In the murine tumor model, MA@E effectively removed the implanted tumor tissue within 2 days without any obvious toxic effects. This response is attributed to a synergism involving the photothermal capability of AuNRs and ROS chemodynamic treatment. The proposed MA@E provides a new approach to utilizing unstable nanomaterials in effective tumor therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.4c02216DOI Listing

Publication Analysis

Top Keywords

enhanced stability
8
tumor therapy
8
ma@e effectively
8
fenton-like reactions
8
tumor
5
ma@e
5
multifunctional liposomes
4
liposomes enhanced
4
stability imaging-guided
4
imaging-guided cancer
4

Similar Publications

Background: Tumor metastasis is one of the main causes of death in cancer patients; however, the mechanism controlling metastasis is unclear. The posttranscriptional regulation of metastasis-related genes mediated by AT-rich interactive domain-containing protein 4A (Arid4a), an RNA-binding protein (RBP), has not been elucidated.

Methods: Bioinformatic analysis, qRT-PCR, immunohistochemistry, and immunoblotting were employed to determine the expression of Arid4a in breast tumor tissues and its association with the survival of cancer patients.

View Article and Find Full Text PDF

Multifunctional Liposomes with Enhanced Stability for Imaging-Guided Cancer Chemodynamic and Photothermal Therapy.

ACS Biomater Sci Eng

March 2025

Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang 261000 P. R. China.

Improvements in tumor therapy require a combination of strategies where targeted treatment is critical. We developed a new versatile nanoplatform, MA@E, that generates high levels of reactive oxygen species (ROS) with effective photothermal conversions in the removal of tumors. Enhanced stability liposomes were employed as carriers to facilitate the uniform distribution and stable storage of encapsulated gold nanorods (AuNRs) and Mn-MIL-100 metal-organic frameworks, with efficient delivery of MA@E to the cytoplasm.

View Article and Find Full Text PDF

Lyophilized monkeypox mRNA lipid nanoparticle vaccines with long-term stability and robust immune responses in mice.

Hum Vaccin Immunother

December 2025

Department of Research & Development, Yither Biotech Co Ltd, Shanghai, China.

The World Health Organization (WHO) has recently declared another global health emergency due to the rapidly spreading monkeypox (Mpox) outbreak in numerous African countries. To address the unmet need to contain the outbreak using the existing vaccines, this study developed a lyophilization process for an effective, scalable and affordable Mpox mRNA-LNP vaccine candidate to address the global health crisis. A comprehensive evaluation and optimization of the vaccine formulation (the type/concentration of cryoprotectants, the type/concentration of buffer system, as well as the mRNA concentration and reconstitution solvent) and the freeze-drying process parameters (freezing method, temperature, cooling rate and primary/secondary drying conditions) were conducted.

View Article and Find Full Text PDF

Objectives: This in vitro study evaluated the effects of simulated toothbrushing on surface roughness, gloss, and color stability of milled and printed resin-based and lithium disilicate materials for permanent dental restorations.

Materials And Methods: Five materials were tested, including CAD/CAM prepolymerized resin blocks, a ceramic material, a resin composite and a newly FDA-cleared 3D-printed resin for permanent crowns. Specimens underwent a controlled brushing protocol simulating 5 years of brushing (50,000 cycles).

View Article and Find Full Text PDF

Layered vanadium-based oxides with preintercalated metal cations are attracting extensive attention as highly promising candidates for aqueous zinc-ion batteries (AZIBs) due to the increase in structural stability originating from the pillar effect. However, the strong electrostatic interaction between the rigid metal cation pillars and zinc ions results in sluggish ionic transport, thereby limiting the high-rate performance. Herein, a layered vanadium-based oxide with protonated 1,4-diaminobutane organic cation (BDA) pillars is designed as a cathode material for AZIBs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!