Objectives: This in vitro study evaluated the effects of simulated toothbrushing on surface roughness, gloss, and color stability of milled and printed resin-based and lithium disilicate materials for permanent dental restorations.

Materials And Methods: Five materials were tested, including CAD/CAM prepolymerized resin blocks, a ceramic material, a resin composite and a newly FDA-cleared 3D-printed resin for permanent crowns. Specimens underwent a controlled brushing protocol simulating 5 years of brushing (50,000 cycles). Surface roughness (R), gloss (GU), and color stability (ΔE) were measured at baseline and after 10,000, 30,000, and 50,000 cycles using an optical profilometer, glossmeter, and spectrophotometer. Scanning electron microscopy (SEM) analyzed surface morphology post-brushing.

Results: Ceramic materials exhibited superior resistance to surface roughness and gloss loss, maintaining high esthetic properties (p < 0.001). In contrast, 3D-printed resin materials showed notable increases in surface roughness and gloss reduction, reflecting a higher susceptibility to wear. Resin composites demonstrated variable performance, with direct-use composites performing worse than their CAD/CAM milled counterparts. Glossed ceramic materials exhibited clinically acceptable color changes, while all other groups exceeded thresholds, posing potential esthetic challenges.

Conclusions: Milled materials, particularly ceramics, demonstrated superior durability and esthetic retention. Optimization is needed for 3D-printed resin materials to enhance their mechanical and esthetic properties for long-term use. These findings guide material selection for durable, esthetic dental restorations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jerd.13450DOI Listing

Publication Analysis

Top Keywords

surface roughness
16
roughness gloss
16
gloss color
12
color stability
12
stability milled
8
milled printed
8
surface
5
simulated tooth
4
tooth brushing
4
brushing surface
4

Similar Publications

Objectives: This in vitro study evaluated the effects of simulated toothbrushing on surface roughness, gloss, and color stability of milled and printed resin-based and lithium disilicate materials for permanent dental restorations.

Materials And Methods: Five materials were tested, including CAD/CAM prepolymerized resin blocks, a ceramic material, a resin composite and a newly FDA-cleared 3D-printed resin for permanent crowns. Specimens underwent a controlled brushing protocol simulating 5 years of brushing (50,000 cycles).

View Article and Find Full Text PDF

A series of star-shaped poly[2-(methacryloyloxy)ethyl trimethylammonium chloride]s with different arm lengths were synthesized open-aired enzymatically assisted ATRP using the 2-hydroxypropyl β-cyclodextrin derivative as an initiator. The resulting PMETAs with narrow molecular weight distribution ( = 1.06-1.

View Article and Find Full Text PDF

This study aimed to investigate the structural, optical, and electronic properties of WO thin films modified by Ta-doping, considering their potential application in photoelectrochemical (PEC) water splitting. Due to its unique physical and chemical properties, WO films have been commonly suggested as a promising photoanode for hydrogen production. However, the wide bandgap and unsuitable band edge positions of WO limit its PEC efficiency.

View Article and Find Full Text PDF

The development of briquettes capable of effectively replacing raw coal samples in physical simulation experiments is crucial for coal mine gas disaster prevention. We invented a new method for preparing briquette coal (BC), and studied how the heating temperature changed its pore structures using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), the low temperature liquid nitrogen adsorption test (LTNAT), and the CH adsorption-desorption test. We found that with an increase in heating temperature, SEM analysis showed that the surface roughness of the coal body increased, and the pores gradually changed from non-developed to large pores.

View Article and Find Full Text PDF

Au nanoparticles-composite TiO nanowires (NWs) modified carbon paper (CP) anode was synthesized via the hydrothermal method. Field emission scanning electron microscopy (FESEM) images demonstrate that the modified nanocomposite electrode features a rough and bumpy surface structure. The electrochemical activities of TiO-Au/CP and the control electrodes (TiO-NWs/CP, Au/CP, CP) for microbial fuel cell (MFC) are investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!