The asymmetric -selective hydrogenation of arenes has long been a significant challenge. In this work, we were able to control the / selectivity in ruthenium-catalyzed asymmetric hydrogenation of 2,3-disubstituted quinoxalines by varying the catalyst counteranion. Using density functional theory calculations, we investigated the weak interactions─such as CH/π and hydrogen bonding─among the counteranion, the catalyst framework, and the substrate, elucidating the fundamental influence of counteranions on / selectivity in the asymmetric hydrogenation of quinoxalines.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.5c00458DOI Listing

Publication Analysis

Top Keywords

ruthenium-catalyzed asymmetric
8
asymmetric -selective
8
-selective hydrogenation
8
hydrogenation 23-disubstituted
8
asymmetric hydrogenation
8
hydrogenation
4
23-disubstituted quinoxaline
4
quinoxaline derivatives
4
derivatives asymmetric
4
hydrogenation arenes
4

Similar Publications

The asymmetric -selective hydrogenation of arenes has long been a significant challenge. In this work, we were able to control the / selectivity in ruthenium-catalyzed asymmetric hydrogenation of 2,3-disubstituted quinoxalines by varying the catalyst counteranion. Using density functional theory calculations, we investigated the weak interactions─such as CH/π and hydrogen bonding─among the counteranion, the catalyst framework, and the substrate, elucidating the fundamental influence of counteranions on / selectivity in the asymmetric hydrogenation of quinoxalines.

View Article and Find Full Text PDF

Among the aromatic carbocyclic rings, the highly regio- and enantioselective hydrogenation of nonsymmetrical naphthalenes has remained a long-standing challenge in asymmetric catalysis. Herein, we reporte an amide-directed asymmetric hydrogenation of nonsymmetrical naphthalenes with a ruthenium catalyst with up to 99% ee. This strategy was also successfully applied in the asymmetric hydrogenation of polycyclic aromatic hydrocarbons.

View Article and Find Full Text PDF
Article Synopsis
  • A new method for C-H functionalization of heteroaryl compounds is introduced, which involves a process called dearomative addition followed by hydrogen autotransfer.
  • This process starts with the hydroruthenation of dienes to create allylruthenium nucleophiles, leading to branched C-C coupling products through addition and β-hydride elimination.
  • The study also details the formation of enantiomerically enriched heteroarylethyl alcohols and amines through oxidative cleavage and dynamic kinetic asymmetric reduction, supported by density functional theory calculations linking regioselectivities to molecular factors.
View Article and Find Full Text PDF

Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of Fused Heteroarenes.

J Am Chem Soc

December 2024

State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

The homogeneous catalytic hydrogenation of benzo-fused heteroarenes generally provides partially hydrogenated products wherein the heteroaryl ring is preferentially reduced, such as quinoline hydrogenation, leading to 1,2,3,4-tetrahydroquinoline. Herein, we report a carbocycle-selective hydrogenation of fused -heteroarenes (quinoline, isoquinoline, quinoxaline, etc.) using the Ru complex of a chiral spiroketal-based diphosphine (SKP) as the catalyst, affording the corresponding 5,6,7,8-tetrahydro products in high chemoselectivities.

View Article and Find Full Text PDF

Development of chiral ferrocenyl P,P,N,N,O-ligands for ruthenium-catalyzed asymmetric hydrogenation of ketones.

Org Biomol Chem

December 2024

Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China.

A new type of ferrocenyl P,P,N,N,O-ligand has been developed through a one-step transformation. This represents a rare example of a ligand containing both chiral bisphosphine and diamine groups suitable for ruthenium-catalyzed asymmetric hydrogenation. Its ruthenium complex can be directly prepared by stirring the ligand and [Ru(benzene)Cl] at 90 °C in DMF for 4 hours.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!