The grain sizes of solid electrolyte interphase (SEI) and solvation structure of electrolytes can affect Li ion transport across SEI and control the desolvation kinetics of solvated Li ions during fast-charging of Li-ion batteries (LIBs). However, the impact of the geometric structure of SEI grains on the fast charging capability of LIBs is rarely examined. Here, the correlation between the SEI grain size and fast charging characteristics of cells is explored, and the desolvation kinetics is controlled by replacing the strongly binding ethylene carbonate (EC) solvent with a weakly binding nitrile-based solvent under fast charging conditions. The evolution of small grains of SEI to provide sufficient paths for Li ion supply can be achieved by the modification of solvation structure in the electrolyte. Additionally, the less resistive SEI composition and low viscosity of isoBN-containing electrolyte enable a more rapid charging of LiNiCoMnO/graphite full cells by facilitating the SEI crossing of Li ions with less Li plating at a charging rate of 4 C at 25 °C. This work sheds light on solvation structure and interface engineering to enhance the fast charging cycle stability of LIBs for tailorable adoption in transportation sectors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202418773DOI Listing

Publication Analysis

Top Keywords

fast charging
20
solvation structure
12
desolvation kinetics
8
charging
7
sei
7
fast
5
geometric design
4
design interface
4
interface structures
4
electrolyte
4

Similar Publications

Enhanced Hot/Free Electron Effect for Photocatalytic Hydrogen Evolution Based on 3D/2D Graphene/MXene Composite.

Small

March 2025

The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.

Photocatalytic hydrogen production through water splitting represents a promising strategy to store solar energy as chemical energy. Current photocatalysts primarily focus on traditional semiconductor materials, such as metal oxides, sulfides, nitrides, g-CN, etc. However, these materials often suffer from large bandgap and fast charge recombination, which limit sunlight utilization and result in unsatisfactory photon conversion efficiency.

View Article and Find Full Text PDF

Bioelectrodes function as a critical interface for signal transduction between living organisms and electronics. Conducting polymers (CPs), particularly poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), are among the most promising materials for bioelectrodes, due to their electrical performance, high compactness, and ease of processing, but often suffer from degradation or de-doping even in some common environments (e.g.

View Article and Find Full Text PDF

Charging and Aggregation of Nano-Clay Na-Montmorillonite in the Presence of Ciprofloxacin.

Nanomaterials (Basel)

March 2025

Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Ibaraki, Japan.

The transport and fate of antibiotics are significantly influenced by co-existing colloidal and nanosized substances, such as clay particles. Montmorillonite, a common clay mineral with a thin nano-sheet-like structure, enhances antibiotic (e.g.

View Article and Find Full Text PDF

Improving the fast-charging capability of NbWO-based Li-ion batteries.

Nat Commun

March 2025

College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China.

The discovery of Nb-W-O materials years ago marks the milestone of charging a lithium-ion battery in minutes. Nevertheless, for many applications, charging lithium-ion battery within one minute is urgently demanded, the bottleneck of which largely lies in the lack of fundamental understanding of Li storage mechanisms in these materials. Herein, by visualizing Li intercalated into representative NbWO, we find that the fast-charging nature of such material originates from an interesting rate-dependent lattice relaxation process associated with the Jahn-Teller effect.

View Article and Find Full Text PDF

The high reactivity of sodium leads to significant safety challenges, while the unstable solid electrolyte interphase (SEI) further complicates its use in sodium-metal batteries (SMBs), collectively impeding their path to commercialization. A deep eutectic electrolyte (DEE) is introduced, which addresses these challenges by balancing high ionic conductivity with stable SEI formation. The introduction of -methylacetamide enhances the nonflammability of the solvent and adjusts the SEI composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!