T-regulatory-type-1 (TR1) cells are a subset of interleukin-10-producing but Foxp3 Treg cells that arise in response to chronic antigenic stimulation. We have shown that systemic delivery of autoimmune disease-relevant peptide-major histocompatibility complex class II (pMHCII)-coated nanoparticles (pMHCII-NP) triggers the formation of large pools of disease-suppressing Foxp3 TR1 cells from cognate T-follicular helper (TFH) cell precursors. Here we show that, upon treatment withdrawal, these Foxp3 TR1 cells spontaneously differentiate into a novel immunoregulatory Foxp3 TR1 subset that inherits epigenetic and transcriptional hallmarks of their precursors, including clonotypic T-cell receptors, and is distinct from other Foxp3 Treg subsets. Whereas the transcription factor BLIMP-1 is dispensable for development of conventional Foxp3 Treg cells, it is necessary for development of Foxp3 TR1 cells. In a model of central nervous system autoimmunity, abrogation of BLIMP-1 or IL-10 expression in the Foxp3 and/or Foxp3 TR1 subsets inhibits their development or anti-encephalitogenic activity. Thus, the TFH-TR1 transdifferentiation pathway results in the generation of two distinct autoimmune disease-suppressing, IL-10-producing TR1 subsets that are distinguished by the expression of Foxp3 and Foxp3 target genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891242 | PMC |
http://dx.doi.org/10.3389/fimmu.2025.1519780 | DOI Listing |
Front Immunol
March 2025
Institut D'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
T-regulatory-type-1 (TR1) cells are a subset of interleukin-10-producing but Foxp3 Treg cells that arise in response to chronic antigenic stimulation. We have shown that systemic delivery of autoimmune disease-relevant peptide-major histocompatibility complex class II (pMHCII)-coated nanoparticles (pMHCII-NP) triggers the formation of large pools of disease-suppressing Foxp3 TR1 cells from cognate T-follicular helper (TFH) cell precursors. Here we show that, upon treatment withdrawal, these Foxp3 TR1 cells spontaneously differentiate into a novel immunoregulatory Foxp3 TR1 subset that inherits epigenetic and transcriptional hallmarks of their precursors, including clonotypic T-cell receptors, and is distinct from other Foxp3 Treg subsets.
View Article and Find Full Text PDFClin Chim Acta
February 2025
School of Public Health, National Defense Medical Center, ROC, Taipei, Taiwan. Electronic address:
Int J Parasitol
January 2025
The helminth Trichinella spiralis, through its excretory-secretory (ES L1) products, induces immune regulatory mechanisms that modulate the host's immune response not only to itself, but also to bystander antigens, foreign or self in origin, which can result in the alleviation of inflammatory diseases. Under the influence of ES L1, dendritic cells (DCs) acquire a tolerogenic phenotype and the capacity to induce Th2 and regulatory responses. Since ES L1 products represent a complex mixture of proteins and extracellular vesicles (TsEVs) the aim of this study was to investigate the impact of TsEVs, isolated from ES L1 products, on phenotypic and functional characteristics of DCs and to elucidate whether TsEVs could reproduce the immunomodulatory effects of the complete ES L1 product.
View Article and Find Full Text PDFFront Immunol
December 2024
Department of Research and Development, Tr1X, Inc., San Diego, CA, United States.
Autoimmune diseases, characterized by the immune system's attack on the body's own tissues, affect millions of people worldwide. Current treatments, which primarily rely on broad immunosuppression and symptom management, are often associated with significant adverse effects and necessitate lifelong therapy. This review explores the next generation of therapies for immune-mediated diseases, including chimeric antigen receptor (CAR) T cell and regulatory T cell (Treg)-based approaches, which offer the prospect of targeted, durable disease remission.
View Article and Find Full Text PDFInflammation
November 2024
Centre for Immuno-Biology and Immunotherapy, Translational Health Science and Technology Institute, NCR-Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, 121001, Haryana, India.
Artemisinin and its derivatives, used as front-line anti-malarial drugs, exhibit anti-inflammatory properties. They were found to suppress the generation and function of Th1 and Th17 cells while promoting the generation of Foxp3 + regulatory T cells (Tregs). However, the specific role of Artemotil (β-arteether) in modulating the generation and functions of CD4 + T cells, particularly Type 1 regulatory T cells (Tr1), remains to be explored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!