Background: Selenium nanoparticles (SeNPs) show high therapeutic potential. SeNPs obtained by green synthesis methods, using commonly available plants, are an attractive alternative to nanoparticles obtained by classical, chemical methods. The green synthesis process uses environmentally friendly reagents, which offer an eco-friendly advantage. Clarifying their mechanism of action is key to their safe use.
Methods: The study used SeNPs obtained using extracts of sage, hops, blackberry, raspberry, and lemon balm, without the use of additional stabilizers, and nanoparticles chemically obtained with ascorbic acid and gallic acid, stabilized with polyvinyl alcohol. The study was carried out on a model strain of Escherichia coli. In the study, the activities of the key enzymes catalase (CAT), superoxide dismutase (SOD), and the response of bacterial cells to osmotic shock were determined.
Results: One of the key mechanisms of action of SeNPs is related to the formation of ROS in bacterial cells. The SeNPs tested showed strong inhibition of CAT, an enzyme crucial for bacterial cells that is involved in the removal of hydrogen peroxide. The tested SeNPs also had an effect on reducing the activity of superoxide dismutase (SOD), which is also involved in the removal of reactive oxygen species from cells. Green SeNPs were also shown to be involved in the cellular response to osmotic shock, confirming their pleiotropic mechanism of action in bacterial cells.
Conclusion: NPs synthesized via green methods exhibit antibacterial activity against E. coli. The green synthesis process employs environmentally friendly reagents, offering a pro-ecological advantage. Notably, these nanoparticles are strongly stabilized by the post-reaction mixture, eliminating the need for toxic stabilizers. Their antimicrobial mechanism involves ROS generation, catalase (CAT) inhibition, and reduced SOD activity, affecting ROS defense and by disrupting the cellular response to osmotic shock.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892364 | PMC |
http://dx.doi.org/10.2147/IJN.S507712 | DOI Listing |
Small
March 2025
Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China.
Agrochemicals play a pivotal role in the management of pests and diseases and the way agrochemicals are utilized exerts significant impacts on the environment. Ensuring rational application and improving utilization rates of agrochemicals are major demands in developing green delivery systems. Herein, a model of nucleic acid-peptide coacervate (NPC) for agrochemical delivery is presented, which is formed by mixing negatively charged single-stranded DNAs with positively charged poly-L-lysine.
View Article and Find Full Text PDFInt J Nanomedicine
March 2025
Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland.
Background: Selenium nanoparticles (SeNPs) show high therapeutic potential. SeNPs obtained by green synthesis methods, using commonly available plants, are an attractive alternative to nanoparticles obtained by classical, chemical methods. The green synthesis process uses environmentally friendly reagents, which offer an eco-friendly advantage.
View Article and Find Full Text PDFRSC Adv
March 2025
Chongqing Key Laboratory of Green Catalysis Materials and Technology, College of Chemistry, Chongqing Normal University Chongqing 401331 China
Natural enzymes, despite their superior catalytic proficiency, are frequently constrained by their environmental sensitivity and the intricacies associated with their extraction and preservation. Consequently, there has been a significant impetus in the scientific community to develop robust, economical, and accessible enzyme mimics. In this context, transition metal borides have risen to prominence as auspicious contenders, capitalizing on their distinctive electronic and catalytic attributes to replicate the functionalities of natural enzymes.
View Article and Find Full Text PDFBiochem Biophys Rep
March 2025
Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran.
Fungal infections pose a considerable threat to the cultivation of barley () and often limit the crop yield. During infection, the transcriptome undergoes extensive reprogramming involving several regulatory pathways. To address this complexity, we performed a comprehensive meta-analysis and co-expression network analysis using rigorously curated RNA-seq datasets from three different fungal diseases.
View Article and Find Full Text PDFLangmuir
March 2025
Department of Chemical Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba 400005, Mumbai, India.
Despite the widespread use of imidazolium-based ionic liquids (ILs) in biotechnology, pharmaceuticals, and green chemistry, their detailed interactions with proteins, particularly affecting structural stability, remain poorly understood. This study examines the effects of ILs on ubiquitin, a thermodynamically robust protein with a β-grasp structure. We found that IL-induced destabilization follows a consistent order with previous findings: [BMIM] > [BMPyr] > [EMIM] for cations and [BF] > [MeSO] > [Cl] for anions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!