Background: The current clinical treatment of periodontitis usually involves mechanical removal of pathogenic bacteria through ultrasonic scaling and root planing, supplemented with antibacterial medications to inhibit microbial overgrowth. However, the therapeutic efficiency remains unsatisfactory due to complicated periodontal anatomy, limited plaque removal, short retention of antibiotics, and related side effects.
Methods And Results: To address these issues, we successfully synthesized mesoporous titanium dioxide nanoparticles (MTN) via a sol-gel method, which were modified with hemoglobin (Hb) and loaded with minocycline (MINO). The resulting Hb-MTN/MINO nanoparticles had a size of 215 nm, zeta potential of -19.8 mV±0.9 mV, and uniform shape with a PDI index of 0.176. The modification with hemoglobin (Hb) provided sufficient oxygen for antimicrobial sonodynamic therapy (aSDT), contributing to improved generation of reactive oxygen species (ROS) under low ultrasound intensity. After MINO loading, the system exhibited notable antibacterial efficacy, with a 6 log reduction of bacterial counts compared to the control group. Hb-MTN/MINO was evaluated in vivo in terms of oral index, soft and hard tissues, along with biosafety evaluation in periodontal disease model rats. Hb-MTN/MINO demonstrated a satisfactory therapeutic effect, whereby the periodontal condition of the rats exhibited a greater improvement than the control group, and measurement of the serum levels of inflammatory factors revealed that both IL-6 and MMP-9 were significantly downregulated.
Conclusion: These findings confirm the potential of Hb-MTN/MINO nanoparticles as a promising treatment option for periodontitis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892737 | PMC |
http://dx.doi.org/10.2147/IJN.S501964 | DOI Listing |
Int J Nanomedicine
March 2025
Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, People's Republic of China.
Background: The current clinical treatment of periodontitis usually involves mechanical removal of pathogenic bacteria through ultrasonic scaling and root planing, supplemented with antibacterial medications to inhibit microbial overgrowth. However, the therapeutic efficiency remains unsatisfactory due to complicated periodontal anatomy, limited plaque removal, short retention of antibiotics, and related side effects.
Methods And Results: To address these issues, we successfully synthesized mesoporous titanium dioxide nanoparticles (MTN) via a sol-gel method, which were modified with hemoglobin (Hb) and loaded with minocycline (MINO).
Int J Nanomedicine
March 2025
Department of Oral Prosthodontics, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, People's Republic of China.
Statement Of Problem: The high recurrence rate of denture stomatitis may be related to the strong resistance of fungi. Therefore, the method of providing biomaterials with antifungal properties is an attractive solution for improving microbial control.
Purpose: Against the drug resistance of Candida albicans, this study aim to elucidate the photocatalytic antibacterial effect of TiO-HAP nanocomposite-modified PMMA on Candida albicans through in vitro experiments, and to evaluate the potential impact of the mechanical properties, optical properties, cytotoxicity and contact angle of the modified PMMA, to provide a scientific basis for the development of denture base resins with minimum percentage of photocatalytic additives.
J Pharm Bioallied Sci
December 2024
Department of Pharmacology, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamil Nadu, India.
Introduction: The emergence of antibiotic-resistant pathogenic bacteria has become a major global health concern, with the increasing prevalence of infections that are difficult to treat with conventional antibiotics. As a result, there is a critical need for alternative antimicrobial agents that can effectively control bacterial infections and combat the growing problem of antibiotic resistance.
Materials And Methods: In this study, the antibacterial properties of lemon juice mediated zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) was evaluated against oral pathogens.
ACS Omega
March 2025
Sironix Division-Research & Development, Arthroscopy & Sports Medicine, Healthium Medtech, Bangalore560058, India.
This study focuses on developing a synthetic, biocompatible graft for treating cartilage lesions. One-dimensional titanium dioxide nanotubes (TNTs) were incorporated into poly(vinyl alcohol) (PVA) hydrogel and processed using freeze-drying without chemical surfactants. Upon optimization of the composition, it was found that the incorporation of TNT altered the biomechanical properties without causing any adverse physiological effects.
View Article and Find Full Text PDFACS Omega
March 2025
Department of Dyes and Chemical Engineering, Bangladesh University of Textiles (BUTEX), Dhaka 1208, Bangladesh.
Smart fabrics with multifunctional properties, such as antimicrobial reduction, superhydrophobicity, and UV resistance, have been highly desirable in medical textiles and sportswear. In this study, we demonstrate a cost-effective approach to achieving these properties. A nanosolution of silver and titanium dioxide was prepared, and a dip coating method was used to coat the polyester-cotton blend and 20% recycled cotton fabric.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!