Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polymers that offer a sustainable alternative to conventional plastics, addressing the escalating concerns over plastic pollution. While their environmental advantages are well-documented, the efficient degradation of PHAs in natural and engineered environments remains a critical component of their lifecycle. This review provides a comprehensive overview of PHA-degrading bacteria isolated from diverse ecosystems and highlights the pivotal role of PHA depolymerases in achieving PHA circularity. Microbial adaptation to diverse environmental conditions, such as extreme temperatures, salinity, and pH, significantly influences enzymes properties, including the stability, activity, and substrate specificity of PHA-degrading enzymes. These adaptations often enhance enzyme, performance, enabling functionality under challenging conditions. Consequently, extremophilic microorganisms are invaluable resources for discovering and engineering robust PHA depolymerases for industrial and environmental applications. This review underscores the urgent need for further research to improve the ecological and economic sustainability of PHA waste management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11893044 | PMC |
http://dx.doi.org/10.3389/fmicb.2025.1542468 | DOI Listing |
Front Microbiol
February 2025
Research Institute of Biology, Biology Faculty, Yerevan State University, Yerevan, Armenia.
Polyhydroxyalkanoates (PHAs) are biobased and biodegradable polymers that offer a sustainable alternative to conventional plastics, addressing the escalating concerns over plastic pollution. While their environmental advantages are well-documented, the efficient degradation of PHAs in natural and engineered environments remains a critical component of their lifecycle. This review provides a comprehensive overview of PHA-degrading bacteria isolated from diverse ecosystems and highlights the pivotal role of PHA depolymerases in achieving PHA circularity.
View Article and Find Full Text PDFBiomacromolecules
March 2025
Department of Biochemistry, Federal University of Paraná, Curitiba 80060-000, PR, Brazil.
Biointerface decoration with ligands is a crucial requirement to modulate biodistribution, increase half-life, and provide navigation control for targeted micro- or nanostructured systems. To better control the process of ligand functionalization over three-dimensional (3D) polyester surfaces, we report the characterization of hybrid proteins developed to enhance the anchoring efficiency over polymeric surfaces and preserve optimal spatial orientation: sfGFP, mRFP1, and the RBD proteins were attached to a polyester substrate binding domain (SBD) formed by the C-terminus region of PHA depolymerase. The binding ability was evaluated over poly(3-hydroxybutyrate) (PHB) microparticles (MP) and two-dimensional (2D) surfaces.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido 062-8517, Japan. Electronic address:
Polyhydroxybutyrate (PHB) has attracted attention as a representative polymer for biodegradable plastics produced by microorganisms. Since information regarding the fate of PHB released into the environment is limited, it is necessary to identify them based on metagenomic information. We estimated the PHB biodegradability in coastal water samples collected from 15 near shore sites around Japan using oxygen consumption as an indicator in laboratory-scale incubation experiments and conducted 16S rRNA gene-based microbial community profiling.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen University of Technology, Xiamen, 361024, China; Fujian Engineering and Research Center of Rural Sewage Treatment and Water Safety, Xiamen University of Technology, Xiamen, 361024, China.
The extensive use of plastic products has led to the accumulation of microplastics (MPs) in agricultural soils, raising concerns about their fate in various environments. Reductive soil disinfestation (RSD) treatment is increasingly being adopted in various countries to address agricultural soil health issues. However, the treatment can alter the soil microbial environment, potentially affecting the fate of contaminants, including MPs.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Belgrade, Serbia. Electronic address:
Plastic pollution presents a significant environmental problem contributing to increased CO emissions and persistently accumulation in ecosystems. Biobased polymers, like polyhydroxyalkanoates (PHAs), offer a part of a solution with their biodegradability and reduced carbon footprint. However, effective end-of-life strategies, such as controlled enzymatic depolymerization, are crucial for sustainability, relying on efficient PHA depolymerases (PHAases).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!