Introduction: Melanoma, a highly aggressive form of skin cancer, and Parkinson's disease (PD), a progressive neurodegenerative disorder, have been epidemiologically linked, showing a positive association that suggests a shared etiology. This association implies that individuals with one condition may have an increased risk of developing the other. However, the specific molecular mechanisms underlying this relationship remain unclear. This study aimed to elucidate the molecular mechanisms by conducting a comprehensive comparative analysis of gene expression profiles in both PD and melanoma to identify common differentially expressed genes (DEGs) that may contribute to the pathophysiological overlap between these two conditions.

Methods: We analyzed two independent publicly available genomic datasets to identify overlapping DEGs associated with both PD and melanoma. Regulatory networks, including transcription factors (TFs), DEGs, and microRNAs (miRNAs), were constructed. Protein-protein interaction (PPI) networks were established to identify hub genes. Additionally, we investigated the interplay between PD, melanoma, and immune cell infiltration to uncover potential correlations between the expression levels of hub genes and specific subsets of immune cells. Molecular docking studies were performed to identify potential therapeutic agents targeting the DEGs.

Results: A total of 41 overlapping DEGs were identified, including VSNL1, ATP6V1G2, and DNM1, which were significantly down-regulated in both PD and melanoma patients. These genes play critical roles in biological processes, cellular components, and molecular functions relevant to the pathogenesis of both diseases. VSNL1 is associated with synaptic vesicle fusion and may impact neuronal communication compromised in PD. ATP6V1G2, a subunit of the V-ATPase, is involved in the dysregulated pH homeostasis observed in melanoma. DNM1, a key player in vesicle trafficking, may influence aberrant cellular transport processes in both diseases. Regulatory and PPI networks revealed potential hub genes and their interactions. Molecular docking studies identified retinoic acid as a potential therapeutic agent targeting VSNL1, ATP6V1G2, and DNM1.

Discussion: Our study provides insights into the shared molecular characteristics of PD and melanoma, identifying potential biomarkers for early diagnosis and prognosis and revealing new therapeutic targets. The discovery of retinoic acid as a promising therapeutic agent represents a significant step forward in drug development and treatment strategies for these diseases. This comprehensive analysis enhances our understanding of the intricate molecular mechanisms underlying the association between PD and melanoma, paving the way for further research and therapeutic advancements. The findings hold the promise of improved diagnosis, prognosis, and personalized treatment strategies for individuals affected by these debilitating diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891206PMC
http://dx.doi.org/10.3389/fgene.2025.1526018DOI Listing

Publication Analysis

Top Keywords

molecular mechanisms
12
hub genes
12
melanoma
9
molecular
8
parkinson's disease
8
mechanisms underlying
8
overlapping degs
8
ppi networks
8
molecular docking
8
docking studies
8

Similar Publications

A NAC transcription factor and a MADS-box protein antagonistically regulate sucrose accumulation in strawberry receptacles.

Plant Physiol

March 2025

Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.

Sugar accumulation during fruit ripening is an essential physiological change that influences fruit quality. While NAC transcription factors are recognized for their role in modulating strawberry (Fragaria × ananassa) fruit ripening, their specific contributions to sugar accumulation have remained largely unexplored. This study identified FvNAC073, a NAC transcription factor, as a key regulator that not only exhibits a gradual increase in gene expression during fruit ripening but also enhances the accumulation of sucrose.

View Article and Find Full Text PDF

Modelling the effects of temperature, pH and osmotic shifts on the autofluorescence of in vitro.

Future Microbiol

March 2025

Anhui Institute of Optics and Fine Mechanics, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Anhui Provincial Engineering Technology Research Center for Biomedical Optical Instrument, Anhui Provincial Engineering Technology Center for Medical Optical Diagnosis Treatment Technology and Instrument, Hefei, Anhui, China.

Aims: This study aims to investigate how different wound microenvironmental factors (temperature, pH, and osmotic pressure) influence the autofluorescence of Staphylococcus aureus ( and its underlying molecular mechanisms, specifically focusing on the porphobilinogen synthase gene gene expression.

Methods: We measured the average fluorescence intensity of colonies under varying conditions of pH (3, 5, 7, 9, 11), temperature (25°C, 31°C, 37°C, 43°C), and osmotic pressure (0.9%, 1.

View Article and Find Full Text PDF

DNA methylation is a key epigenetic mark found in both eukaryotic as well as prokaryotic genomes. It is essential for regulating expression of genes and preservation of genomic integrity. Both plants and animals possess specific proteins that mediate biological effects of DNA methylation.

View Article and Find Full Text PDF

Periodontitis is a significant global public health issue associated with the onset and progression of various systemic diseases, thereby requiring additional research and clinical attention. Although ferroptosis and cuproptosis have emerged as significant areas of research in the medical field, their precise roles in the pathogenesis of periodontitis remain unclear. We aim to systematically summarize the current research on ferroptosis and cuproptosis in periodontal disease and investigate the roles of glutathione pathway and autophagy pathway in connecting ferroptosis and cuproptosis during periodontitis.

View Article and Find Full Text PDF

The role of mA modification during macrophage metabolic reprogramming in human diseases and animal models.

Front Immunol

March 2025

Department of Laboratory Medicine, Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.

Macrophage metabolic reprogramming refers to the process by which macrophages adjust their physiological pathways to meet survival and functional demands in different immune microenvironments. This involves a range of metabolic pathways, including glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and cholesterol transport. By modulating the expression and activity of key enzymes and molecules within these pathways, macrophages can make the transition between pro- and anti-inflammatory phenotypes, thereby linking metabolic reprogramming to inflammatory responses and the progression of several diseases, such as atherosclerosis, inflammatory bowel disease (IBD), and acute lung injury (ALI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!