Hyperactivation of fatty acid biosynthesis holds promise as a targeted therapeutic strategy in prostate cancer (PCa). However, inhibiting these enzymes could potentially promote metastatic progression in various other cancers. Herein, we found that depletion of acetyl-CoA carboxylase 1 (encoded by ACACA), the enzyme responsible for the first and rate-limiting step of de novo fatty acid biosynthesis, facilitated epithelial-mesenchymal transition (EMT) and migration of PCa cells. This finding was validated in vitro through cell migration assays and in vivo using a metastatic model established by tail vein injection of ACACA-depleted cells into BALB/c nude mice. Additionally, depletion of ACACA activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated protein kinases (ERK) pathway. Inhibition of the MAPK/ERK signaling pathway reduced EMT and migration in ACACA-depleted cells. Our study is the first to indicate targeting ACACA induces an "unexpected" escape program through activation of the MAPK/ERK signaling pathway in PCa, ultimately leading to EMT and metastasis. Therefore, we strongly recommend that the potential adverse effects of targeting ACACA or its derived therapeutic agents must be given extreme attention, especially in MAPK-related cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892147 | PMC |
http://dx.doi.org/10.1002/mco2.70126 | DOI Listing |
Hyperactivation of fatty acid biosynthesis holds promise as a targeted therapeutic strategy in prostate cancer (PCa). However, inhibiting these enzymes could potentially promote metastatic progression in various other cancers. Herein, we found that depletion of acetyl-CoA carboxylase 1 (encoded by ACACA), the enzyme responsible for the first and rate-limiting step of de novo fatty acid biosynthesis, facilitated epithelial-mesenchymal transition (EMT) and migration of PCa cells.
View Article and Find Full Text PDFCell Rep
February 2025
Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:
ATP-citrate lyase (ACLY) generates cytosolic acetyl-coenzyme A (acetyl-CoA) for lipid synthesis and is a promising therapeutic target in diseases with altered lipid metabolism. Here, we developed inducible whole-body Acly-knockout mice to determine the requirement for ACLY in normal tissue functions, uncovering its crucial role in skin homeostasis. ACLY-deficient skin upregulates the acetyl-CoA synthetase ACSS2; deletion of both Acly and Acss2 from the skin exacerbates skin abnormalities, with differential effects on two major lipid-producing skin compartments.
View Article and Find Full Text PDFBiomed Pharmacother
March 2025
Department of Biology, National Changhua University of Education Changhua, 50007, Taiwan. Electronic address:
Fluoxetine (FXT) and alprazolam (APZ), widely used for mental disorders, have poorly studied adverse effects on mitochondrial function, including oxidative phosphorylation, electron transport, and membrane permeability. This study represents the first investigation using a chick embryo model (HH-stage 10, day 1.5) to analyze the teratogenic effects of FXT and APZ and explore the protective potential of coenzyme Q10 (CoQ10) and L-carnitine (CNT).
View Article and Find Full Text PDFEMBO J
March 2025
Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
Metabolic requirements of dividing hepatocytes are prerequisite for liver regeneration after injury. In contrast to transcriptional dynamics during liver repair, its metabolic dependencies remain poorly defined. Here, we screened metabolic genes differentially regulated during liver regeneration, and report that SLC13A2, a transporter for TCA cycle intermediates, is decreased in rapid response to partial hepatectomy in mice and recovered along restoration of liver mass and function.
View Article and Find Full Text PDFNeuropharmacology
March 2025
Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Electronic address:
Metabolic-epigenetic interactions are emerging as key pathways in regulating alcohol-related transcriptional changes in the brain. Recently, we have shown that this is mediated by the metabolic enzyme Acetyl-CoA synthetase 2 (Acss2), which is nuclear and chromatin-bound in neurons. Mice lacking ACSS2 fail to deposit alcohol-derived acetate onto histones in the brain and show no conditioned place preference for ethanol reward.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!