Extracellular Vesicles Derived From Regenerating Tissue Promote Stem Cell Proliferation in the Planarian .

J Extracell Biol

Genes and Human Disease Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA.

Published: March 2025

Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole-body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury. Here, using transmission electron microscopy, nanoparticle tracking analysis, and protein content examination, we showed that EVs enriched from the tissues of the planarian had similar morphology and size as other eukaryotic EVs, and that these EVs carried orthologs of the conserved EV biogenesis regulators ALIX and TSG101. PKH67-labeled EVs were taken up efficiently by planarian cells, including S/G2 neoblasts, G1 neoblasts/early progeny, and differentiated cells. When injected into living planarians, EVs from regenerating tissue fragments enhanced the upregulation of neoblast-enriched and proliferation-related transcripts. In addition, EV injection increased the number of -EdU-labelled cells by 49% as compared to buffer injection only. Our findings demonstrate that regenerating planarians produce EVs that promote stem cell proliferation, and suggest the planarian as an amenable in vivo model for the study of EV function during regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11891293PMC
http://dx.doi.org/10.1002/jex2.70040DOI Listing

Publication Analysis

Top Keywords

regenerating tissue
8
promote stem
8
stem cell
8
cell proliferation
8
proliferation planarian
8
evs
8
evs promote
8
planarian
5
cells
5
extracellular vesicles derived
4

Similar Publications

Synergistic Effects of a Novel Multifunctional Bionic Scaffold and Electrical Stimulation Promote Bone Tissue Regeneration.

Biotechnol Bioeng

March 2025

Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Jilin University, Changchun, China.

Electrical stimulation (ES) can effectively regulate cell behavior and promote bone tissue regeneration, and conductive biomaterials can further enhance this effect by enhancing the conduction of electrical signals between cells. In this study, poly(lactic-co-glycolic acid) (PLGA) and poly(l-lactide)-aniline pentamer triblock copolymer (PAP) were used as raw materials to prepare a conductive bionic scaffold (PLGA/PAP). Subsequently, bone morphogenetic protein 2 mimetic peptide containing a DOPA tag (DBMP2MP) was loaded on the scaffold surface.

View Article and Find Full Text PDF

Cassava is a crucial source of daily calorie intake for millions of people in sub-Saharan Africa (SSA) but has an inferior protein content. Despite numerous attempts utilizing both traditional and biotechnological methods, efforts to address protein deficiency in cassava have yet to meet with much success. We aim to leverage modern biotechnologies to enhance cassava's nutritional value by creating bioengineered cassava cultivars with increased protein and starch content.

View Article and Find Full Text PDF

Optimization of Metal-Based Nanoparticle Composite Formulations and Their Application in Wound Dressings.

Int J Nanomedicine

March 2025

Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.

Metal-based nanoparticles (MNPs) have great potential for applications in wound healing and tissue engineering, and due to their unique structures, high bioactivities, and excellent designability characteristics, an increasing number of studies have been devoted to modifying these species to generate novel composites with desirable optical, electrical, and magnetic properties. However, few systematic and detailed reviews have been performed relating to the modification approaches available for MNPs and their resulting composites. In this review, a comprehensive summary is performed regarding the optimized modification formulations of MNPs for application in wound dressings, and the techniques used to prepare composite wound dressings are discussed.

View Article and Find Full Text PDF

Extracellular Vesicles Derived From Regenerating Tissue Promote Stem Cell Proliferation in the Planarian .

J Extracell Biol

March 2025

Genes and Human Disease Research Program Oklahoma Medical Research Foundation Oklahoma City Oklahoma USA.

Extracellular vesicles (EVs) are secreted nanoparticles composed of a lipid bilayer that carry lipid, protein, and nucleic acid cargo between cells as a mode of intercellular communication. Although EVs can promote tissue repair in mammals, their roles in animals with greater regenerative capacity are not well understood. Planarian flatworms are capable of whole-body regeneration due to pluripotent somatic stem cells called neoblasts that proliferate in response to injury.

View Article and Find Full Text PDF

Recent advances and future directions in urinary system tissue engineering.

Mater Today Bio

April 2025

Department of Urology, Affiliated Hospital of Jiangsu University, 438 North Jiefang Road, Zhenjiang, Jiangsu, 212001, PR China.

Recent advancements in tissue engineering offer promising solutions for the repair and reconstruction of the urinary system, particularly in cases of urinary organ injuries. Historically, autologous tissue grafts and allografts have been the primary options for repairing damaged tissues. However, these approaches often lead to complications such as immune rejection, donor site morbidity, and functional limitations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!