Strontium phosphorus chloride (SrPCl) presents a promising option for photovoltaic (PV) applications due to its distinctive optical, electrical, and structural characteristics. This research uses density functional theory (DFT) to examine its structural stability and optoelectronic properties. The PV performance of SrPCl-based cell designs was examined, utilizing an electron transport layer (ETL) of ZnO and four different hole transport layers (HTLs): CuO, CBTS, MoO, and CuI. Essential parameters, including band alignment, layer thickness, defect density, doping concentration, interface defect density, carrier concentration, and generation-recombination rates, were consistently assessed numerical simulations utilizing SCAPS-1D software. The findings indicated that the CuO HTL structure attained the highest power conversion efficiency (PCE) of 26.67%, with an open-circuit voltage ( ) of 1.3 V, a short-circuit current density ( ) of 22.79 mA cm and a fill factor (FF) of 89.9%. The CBTS, MoO, and CuI HTL designs attained PCEs of 26.39%, 24.86%, and 21.78%, respectively. To enhance device performance, the bifacial mode was investigated, and the PV efficacy of the proposed PSC structure was examined. Among these, the CuO-based structure shows the highest performance, attaining a bifacial factor of 87.21%, a bifacial gain of 16.74% and bifacial efficiency of 31.07%. These findings provide significant insights and propose a viable approach for the advancement of economic and excellent performance SrPCl-based perovskite solar cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11892102 | PMC |
http://dx.doi.org/10.1039/d5ra00607d | DOI Listing |
ACS Appl Mater Interfaces
March 2025
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, P. R. China.
Layered vanadium-based oxides with preintercalated metal cations are attracting extensive attention as highly promising candidates for aqueous zinc-ion batteries (AZIBs) due to the increase in structural stability originating from the pillar effect. However, the strong electrostatic interaction between the rigid metal cation pillars and zinc ions results in sluggish ionic transport, thereby limiting the high-rate performance. Herein, a layered vanadium-based oxide with protonated 1,4-diaminobutane organic cation (BDA) pillars is designed as a cathode material for AZIBs.
View Article and Find Full Text PDFSmall
March 2025
School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China.
Hard carbon is the sole anode material employed in commercial sodium-ion batteries. However, its intrinsic defects and impurities will lead to battery failure, diminishing further development of sodium batteries in energy storage. Here, an acrylonitrile copolymer and poly(ethylene oxide) (LA/PEO) composite binder is developed to address these challenges in biomass-derived hard carbon.
View Article and Find Full Text PDFRSC Adv
March 2025
Department of Chemistry, Faculty of Science, King Khalid University PO Box 9004 Abha 61413 Saudi Arabia.
Strontium phosphorus chloride (SrPCl) presents a promising option for photovoltaic (PV) applications due to its distinctive optical, electrical, and structural characteristics. This research uses density functional theory (DFT) to examine its structural stability and optoelectronic properties. The PV performance of SrPCl-based cell designs was examined, utilizing an electron transport layer (ETL) of ZnO and four different hole transport layers (HTLs): CuO, CBTS, MoO, and CuI.
View Article and Find Full Text PDFRSC Adv
March 2025
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
Jetting dynamics from bursting bubbles play a key role in mediating mass and momentum transport across the air-liquid interface, and have attracted widespread interest from researchers across disciplines. In marine environments, this phenomenon has drawn considerable attention due to its role in releasing biochemical contaminants, such as extracellular polymeric substances, into the atmosphere through aerosol production. These biocontaminants often exhibit non-Newtonian characteristics, yet the physics of bubble bursting with a rheologically complex layer at the bubble-liquid interface remains largely unexplored.
View Article and Find Full Text PDFJ Neuroendocrinol
March 2025
Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
Kisspeptin (KP) signaling in the brain is defined by the anatomical distribution of KP-producing neurons, their fibers, receptors, and connectivity. Technological advances have prompted a re-evaluation of these chemoanatomical aspects, originally studied in the early years after the discovery of KP and its receptor Kiss1r. Previously, we characterized (Hernández et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!