Bismuth sulfide has garnered considerable attention in recent years for thermoelectric applications because it comprises of earth-abundant, low-cost sulfur. However, it has a large bandgap causing low electrical conductivity compared to other chalcogenides, limiting its thermoelectric performance. In the present work, using a small concentration of CuCl doping, 9-times ZT-enhancement is demonstrated in BiS attaining a maximum ZT≈1.02 at 723 K. It is achieved primarily by improving electron transport behavior in BiS as evident from unprecedented 29-times increase in electrical conductivity attained in CuCl doped BiS. Using density funtional theory (DFT) calculation, it is shown that Cu occupying the interstitials in BiS indeed creates a mid-gap state, and modifies its band structure by generating multiple valleys in conduction band minima. Hence, a one-order of magnitude increase in electron concentration is observed in CuCl-doped BiS. Moreover, the presence of nano-scale Cu-rich region along with nano-size grains in doped BiS as detected by high-resolution transmission electron microscopy (HRTEM) facilitates enhanced phonon scattering leading to suppressed lattice thermal conductivity. A prototype of a 4-legged thermoelectric power generator (TEG) has been fabricated demonstrating a 3 mW power output with a power density of 7500 mW m, which potentially opens up a new avenue of making high-performance TEG made of non-toxic, low-cost, earth-abundant elements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202412711 | DOI Listing |
Nanomaterials (Basel)
February 2025
Centro de Ciências e Tecnologias Nucleares (C2TN), Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico, Universidade de Lisboa, Campus Tecnológico e Nuclear, 2695-066 Bobadela, Portugal.
Thermoelectric (TE) materials offer a promising solution to reduce green gas emissions, decrease energy consumption, and improve energy management due to their ability to directly convert heat into electricity and vice versa. Despite their potential, integrating new TE materials into bulk TE devices remains a challenge. To change this paradigm, the preparation of highly efficient tetrahedrite nanocomposites is proposed.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2025
Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain.
Poly(benzodifurandione) (PBFDO) has emerged as a promising n-type conductive polymer (n-CP) for organic electronic applications, particularly in thermoelectrics (TE), due to its high doping efficiency and environmental stability. Unlike most high-performance p-type polymers, high-efficiency n-CPs are limited, posing a bottleneck in the TE module performance. In this study, we use first-principles electronic structure calculations to investigate the thermodynamic conditions that favor n-doping in PBFDO, focusing on the role of the temperature, chain length, and doping concentration.
View Article and Find Full Text PDFACS Nano
March 2025
Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, School of Materials Science & Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
Since most conductive polymers are -type, developing high-performance -type organic-inorganic composite thermoelectric (TE) fibers is a great challenge. Herein, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-coated AgTe nanowires (PC-AgTe NWs) were prepared by a liquid-phase reaction using PEDOT:PSS-coated Te nanowires (PC-Te NWs) as templates, and the PEDOT:PSS/PC-AgTe NWs composite fibers were then prepared by wet spinning. As the content of PC-AgTe NWs increases, the composite fiber changes from -type to -type.
View Article and Find Full Text PDFSmall
March 2025
Plasmonics and Perovskites Laboratory, Dept. of Materials Science and Engineering, IIT Kanpur, Kanpur, Uttar Pradesh, 208016, India.
Bismuth sulfide has garnered considerable attention in recent years for thermoelectric applications because it comprises of earth-abundant, low-cost sulfur. However, it has a large bandgap causing low electrical conductivity compared to other chalcogenides, limiting its thermoelectric performance. In the present work, using a small concentration of CuCl doping, 9-times ZT-enhancement is demonstrated in BiS attaining a maximum ZT≈1.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong SAR , China.
The thermoelectric material ZnSb has been intensively studied on account of its good thermodynamic stability and earth-abundant constituent elements, both of which make it feasible for mass production. However, the practical application of ZnSb is limited by its relatively poor thermoelectric performance, characterized by a low power factor and high lattice thermal conductivity. Herein, we demonstrate that there is a significant improvement in the thermoelectric figure of merit of ZnSb by combining Ge doping at the Sb site with Cd alloying at the Zn site.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!