Background: Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes and a leading cause of vision loss among diabetic individuals. Retinal pigment epithelium (RPE) cells play a crucial role in the pathophysiology of DR by releasing cytokines and exosomal cargo, such as long non-coding RNAs (lncRNAs), that modulate local immune responses, maintain retinal immune homeostasis and influence macrophage polarisation. Recent studies suggest that lncRNA cancer susceptibility candidate 2 (CASC2) may be involved in the regulation of DR progression. However, the regulatory mechanisms linking CASC2 with RPE cells and its role in macrophage polarisation remain insufficiently understood.
Methods: Various types of cells, including human retinal pigment epithelial cells (ARPE-19), THP-1 monocytes and additional retinal cell lines, were cultured under normal glucose and high glucose conditions. ARPE-19 cells were exposed to oxidative stress, inflammatory stimulation, or hypoxic conditions. Plasma and aqueous humour samples were collected from DR patients and diabetic controls. Exosomes were extracted from AREP-19 cells and characterised. Various gene and protein expression analyses were performed using techniques including quantitative reverse transcription polymerase chain reaction, Western blot, immunofluorescence, flow cytometry, enzyme-linked immunosorbent assay, and histological staining. Cell proliferation and migration were assessed using Cell Counting Kit-8 assays and Transwell migration assays, respectively. The interactions among CASC2, suppressor of cytokine signalling 6 (SOCS6), and U2 small nuclear RNA auxiliary factor 2 (U2AF2) were explored using RNA immunoprecipitation and dual-luciferase reporter assays. An in vivo diabetic rat model was established.
Results: lncRNA CASC2 expression levels were significantly lower in plasma and aqueous humour from DR patients compared to those from diabetic patients without retinopathy. Overexpression of CASC2 significantly attenuated DR and inflammatory damage both in vitro and in vivo. We demonstrated that exosomal CASC2 from ARPE-19 cells mediated macrophage polarisation by inhibiting M1 polarisation and promoting M2 polarisation. Our findings suggest that CASC2 regulates this polarisation through the stabilisation of SOCS6 mRNA via U2AF2.
Conclusion: CASC2 derived from RPE cells was transported to macrophages, inducing M2 polarisation by stabilising SOCS6 mRNA through the recruitment of U2AF2. This research may provide a foundation for developing novel therapeutic strategies for DR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/dme.70014 | DOI Listing |
Aging Dis
February 2025
Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China.
As the resident macrophages of the brain, microglia are crucial immune cells specific to the central nervous system (CNS). They constantly surveil their surroundings and trigger immunological reactions, playing a key role in various neurodegenerative diseases (ND). As illnesses progress, microglia exhibit multiple phenotypes.
View Article and Find Full Text PDFCells
February 2025
Renal Division, Department of Medicine, Peking University First Hospital, Beijing 100034, China.
Diabetic nephropathy (DN), one of the most common complications of diabetes mellitus (DM), accounts for a major cause of chronic kidney disease (CKD) worldwide, with a complicated pathogenesis and limited effective strategies nowadays. The mineralocorticoid receptor (MR) is a classical ligand-activated nuclear transcription factor. It is expressed in the renal intrinsic and immune cells, especially macrophages.
View Article and Find Full Text PDFIntegr Cancer Ther
March 2025
Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Chemoresistance is still an important factor affecting the efficacy of treatment in colorectal cancer (CRC) patients. Hypoxia is related to poor prognosis and treatment resistance in cancer. Relevant studies have shown that a hypoxic microenvironment can promote the polarization of M2 macrophages and thus promote tumor development.
View Article and Find Full Text PDFMater Today Bio
April 2025
Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
Diabetic wounds often exhibit delayed healing due to compromised vascular function and intensified inflammation. In this study, we overexpressed Thymosin β4 (Tβ4) in Adipose-Derived Stem Cells (ADSCs) to produce Exosomes (Exos) rich in Tβ4. We then utilized a dual photopolymerizable hydrogel composed of Hyaluronic Acid Methacryloyl (HAMA) and Poly-L-lysine Methacryloyl (PLMA) for the sustained release of Tβ4-Exos on diabetic wounds.
View Article and Find Full Text PDFFront Physiol
February 2025
Department of Exercise Physiology, Beijing Sport University, Beijing, China.
Background: Exercise improves insulin sensitivity and lipid metabolism while the mechanisms remain unclear. MicroRNAs (miRNAs) have been linked to the development of type 2 diabetes mellitus (T2DM) and served as a potential therapeutic target. The study aimed to explore how aerobic exercise prevents chronic inflammation and insulin resistance (IR) in skeletal muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!