Background/aims: Previously, we advocated the importance of classifying hepatocellular carcinoma (HCC) based on physiological functions. This study aims to classify HCC by focusing on liver-intrinsic metabolism and glycolytic pathway in cancer cells.
Methods: Comprehensive RNA/DNA sequencing, immunohistochemistry, and radiological evaluations were performed on HCC tissues from the training cohort (n=136) and validated in 916 public samples. HCC was classified using hierarchical clustering and compared with previous molecular, histopathological, and hemodynamic classifications.
Results: Liver-specific metabolism and glycolysis are mutually exclusive and were divided into two major subclasses: The "rich metabolism" subclass (60.3%) is characterized by enhanced bile acid and fatty acid metabolism, well-to-moderate differentiation, microtrabecular or pseudoglandular pattern, and homogeneous arterial-phase hyperenhancement (APHE), corresponding to Hoshida S3 with favorable prognosis. In IL6-JAK-STAT3-high (25.0%) conditions, upregulated ALB expression, enhanced gluconeogenesis and urea cycle activity, and an inflammatory-microenvironment are observed. Conversely, the Wnt/β-catenin-high environment (19.9%) features elevated GLUL, APOB and CYP3A4 expression, frequent CTNNB1 (D32-S37) mutations, and an immune-desert/excluded phenotype. The "glycolysis" subclass (39.7%), characterized by histopathological dedifferentiation and downregulated liver-specific metabolism, encompasses subclasses with PI3K/mTOR (20.6%) and NOTCH/TGF-β (19.1%) signaling. These often exhibit TP53 mutations, macrotrabecular massive or compact patterns, inhomogeneous/rim-APHE, and high expression of hypoxia-inducible factors and glucose transporters, corresponding to Hoshida S1/2 with poor prognosis.
Conclusion: The loss of liver-specific metabolism correlates with morphological dedifferentiation, indicating cellular dedifferentiation may exhibit both physiological and pathological duality. Key signaling pathways involved in the maturation process from fetal to adult liver and zonation program may play a critical role in defining HCC diversity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3350/cmh.2024.1088 | DOI Listing |
Clin Mol Hepatol
March 2025
Department of Gastroenterology and Hepatology/Kindai University Faculty of Medicine, Osaka-Sayama, Japan.
Background/aims: Previously, we advocated the importance of classifying hepatocellular carcinoma (HCC) based on physiological functions. This study aims to classify HCC by focusing on liver-intrinsic metabolism and glycolytic pathway in cancer cells.
Methods: Comprehensive RNA/DNA sequencing, immunohistochemistry, and radiological evaluations were performed on HCC tissues from the training cohort (n=136) and validated in 916 public samples.
Am J Physiol Cell Physiol
March 2025
NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China.
The deficiency of fructose-1,6-bisphosphatase 1 (FBP1), a key enzyme of gluconeogenesis, causes fatty liver. However, its underlying mechanism and physiological significance are not fully understood. Here we demonstrate that carbohydrate response element-binding protein (ChREBP) mediates lipid metabolic remodeling and promotes progressive triglycerides accumulation against metabolic injury in adult FBP1-deficient liver.
View Article and Find Full Text PDFLiver Int
April 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Background And Aims: The farnesoid X receptor (FXR) is an attractive pharmaceutical target for metabolic dysfunction-associated steatotic liver disease (MASLD). However, its tissue-specific roles in energy metabolism remain controversial, hindering the development of effective therapies. To address this, new approaches are required.
View Article and Find Full Text PDFThe effect of the nitric oxide donor S-nitrosoglutathione on the level and activity of organic anion transporting polypeptide 1B1 (OATP1B1), as well as the expression of the SLCO1B1 gene encoding the transporter protein, was investigated in HepG2 cells. The study has shown that treatment of cells with S-nitrosoglutathione for 3 h did not influence the content and activity of OATP1B1. Incubation with S-nitrosoglutathione (10-500 μM) for 24 h increased SLCO1B1 expression, the content of OATP1B1, and activity of the transporter protein.
View Article and Find Full Text PDFMil Med Res
March 2025
Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, 100191, China.
Background: Kinesin family member 13B (KIF13B), a crucial motor protein, exerts multiple cellular biological functions. However, the implication of KIF13B in metabolic dysfunction-associated fatty liver disease (MAFLD) has not been explored yet. This study aimed to investigate KIF13B's role and underlying mechanism in MAFLD and proposes it as a potential pharmacological target.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!