Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The rapid and precise quantification and identification of proteins as key diagnostic biomarkers hold significant promise in allergy testing, disease diagnosis, clinical treatment, and proteomics. This is crucial because alterations in disease-associated genetic information during pathogenesis often result in changes in protein types and levels. Therefore, the design of portable, fast, user-friendly, and affordable sensing platforms rather than a single-sensor-per-analyte strategy for multiplex protein detection is quite consequential. In the present research, a robust multicolorimetric probe based on the inhibited etching of gold nanorods (AuNRs) allowing unambiguous high-performance visual and spectral quantification and identification of proteins in human urine samples was designed. Most recently, we discovered that -bromosuccinimide (NBS) can quickly etch AuNRs with a distinct color change, allowing convenient and accurate visual recognition of all amino acids. Herein, further explorations revealed that the presence of proteins, as amino acids' polymers, reduces the effective concentration of NBS to different amounts and in turn prevents the etching of AuNRs to various degrees, thereby allowing precise quantification and identification of various proteins ranging from phosphatase (ACP), pepsin (Pep), hemoglobin (Hem), and transferrin (TRF) to immunoglobulin G (IgG), lysozyme (Lys), fibrinogen (Fib), and human serum albumin (HSA). The acquired dataset was statistically analyzed using linear discriminant analysis (LDA), partial least-squares regression (PLSR), and hierarchical cluster analysis (HCA) to accurately classify and identify individual proteins and their combinations at various levels. The multivariate regression models indicated that the colorimetric responses were linearly dependent on protein concentrations with low detection limits of around 1 ppm. Most importantly, the proposed multidimensional colorimetric probe was successfully utilized for protein discrimination in real urine samples. The diverse rainbow responses exhibited by the AuNRs in the proposed probe greatly enhance the accuracy of visual detection, making it a practical tool for straightforward protein monitoring in real samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr04797d | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!