The environmental and health challenges posed by petroleum-based biodegradable plastics, such as polybutylene succinate (PBS) and polybutyleneadipate-co-terephthalate (PBAT), are a significant concern because they are increasingly present in the environment and contribute a substantial proportion of microplastics (MPs) or nanoplastics (NPs). In this study, ultraviolet (UV)-aged PBS-NPs and PBAT-NPs are found to have a higher propensity to accumulate within the body of () by prolonging the defecation interval, which could induce severe neuronal damage compared to pristine NPs. The increased accumulation of biodegradable nanoplastics (BNPs) and subsequent impairments of neurobehavior are highly attributed to their reduced particle size and altered surface properties, including changed chemical bonds and functional groups after photoaging. Aged BNPs also cause more severe damage to GABAergic neurons and neurotransmitter receptors, resulting in disrupted neuronal homeostasis and behaviors. Overall, BNPs of both PBS and PBAT components show no significant differences in biological accumulation and mechanisms of neural damage, highlighting the commonalities and characteristics of the adverse effects of petroleum-based BNPs on the nervous system. Our study opens up the exploration of the health impacts of photoaging and the degradation state of BNPs that are increasingly present in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c13250 | DOI Listing |
Environ Sci Technol
March 2025
School of Medicine, Southeast University, Nanjing 210009, China.
The environmental and health challenges posed by petroleum-based biodegradable plastics, such as polybutylene succinate (PBS) and polybutyleneadipate-co-terephthalate (PBAT), are a significant concern because they are increasingly present in the environment and contribute a substantial proportion of microplastics (MPs) or nanoplastics (NPs). In this study, ultraviolet (UV)-aged PBS-NPs and PBAT-NPs are found to have a higher propensity to accumulate within the body of () by prolonging the defecation interval, which could induce severe neuronal damage compared to pristine NPs. The increased accumulation of biodegradable nanoplastics (BNPs) and subsequent impairments of neurobehavior are highly attributed to their reduced particle size and altered surface properties, including changed chemical bonds and functional groups after photoaging.
View Article and Find Full Text PDFJ Environ Sci (China)
August 2025
Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, China. Electronic address:
Nano-plastics, emerging pollutants in the environment, have raised global concern due to their widespread presence in daily life and the potential toxicity to human health. Upon entering human body, nano-plastics can readily interact with vascular endothelial cells within the bloodstream, potentially leading to endothelial dysfunction. However, our understanding of the toxic impact of nano-plastics on vascular endothelial cells remains insufficient, and the underlying mechanism are yet to be elucidated.
View Article and Find Full Text PDFPlant Physiol Biochem
February 2025
School of Life Sciences, Hebei University, Baoding, 071002, PR China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, PR China. Electronic address:
Nanoplastics, infiltrating soil ecosystems through diverse pathways such as agricultural practices, sludge application, and atmospheric deposition, present significant potential risks to global ecological systems. Through adsorption, iron oxide nanoparticles (IONPs) could reduce toxicity and bioavailability of nanoplastics in polluted soil ecosystems. However, little is known about how interactions between IONPs and polystyrene nanoplastics (PSNPs) affect plant growth.
View Article and Find Full Text PDFAnimals (Basel)
February 2025
Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
Nanoplastics (NPs) can cross cellular membranes and affect cellular performance. This study aims to determine the effects of polystyrene NPs (PS-NPs, 44 nm) on gilthead seabream () exposed for 14 days to 100 μg/L PS-NPs. The results show that biometric indicators (weight, length, Fulton's condition factor, and hepatosomatic index) were not affected after the experimental exposures.
View Article and Find Full Text PDFAquat Toxicol
April 2025
Environmental Chemistry Department, IDAEA -CSIC-, C/ Jordi Girona, 18-26, 08034, Barcelona, Spain. Electronic address:
Despite growing awareness of the size-dependent toxicity caused by micro- and nano-plastics (MNPs) in fish, the modulation of the liver lipidome as a function of particle size has not been thoroughly investigated. This study explores the subcellular and molecular responses induced by polystyrene microplastics (MPs, 1 µm) and nano-plastics (NPs, 52 nm) in zebrafish liver (ZFL) cells, with a focus on the modulation of the cell's lipidome and gene expression profiles. Both particle sizes are readily internalized by ZFL cells; however, NPs had a more pronounced impact compared to MPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!