For optimal energy transfer in self-luminous lanthanide metal-organic frameworks (Ln-MOFs), the energy of the lowest triplet excited state must align with ideal energy levels. Failure to meet this condition can lead to reverse energy transfer, reducing luminous efficiency. In this study, we developed a mixed-ligand MOF, Eu-TCPP-BOP, which exists as an ECL self-enhancing luminophore. We used SPECM to study the role of boron ligands as a bridge for electron transport in improving the ECL performance of Eu-TCPP. The ligands HTCPP and 5-BOP act as electron donor and shuttle, facilitating electron transport during the synthesis of Eu-TCPP-BOP and promoting energy transfer to the excited state of the acceptor Ln, thus enhancing overall energy transfer in Ln-MOF. The results indicate that the introduction of boron ligands enhances the ECL intensity of Eu-TCPP by a factor of 1.4 under voltage excitation. As an ECL sensing platform, it demonstrates high sensitivity and selectivity for the detection of catechol, with a concentration range of 1∼70 μM and a detection limit of 0.35 μM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.4c06857 | DOI Listing |
J Am Chem Soc
March 2025
Department of Chemistry, and the Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, PR China.
Research on room temperature phosphorescence (RTP) of metal-organic frameworks (MOFs) has been rapidly developed in recent years. However, it is still challenging to realize long-wavelength RTP (>580 nm). In this article, a new strategy is proposed to achieve the red-shifted RTP through constructing dual-ligand MOFs.
View Article and Find Full Text PDFLangmuir
March 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province. School of Petrochemical Technology, Lanzhou University of Technology, Langongping Road 287, Lanzhou 730050, P. R. China.
The photoelectrochemical properties of hematite-based photoanodes are hindered by severe carrier recombination and poor reaction activity, which is a major challenge. Herein, we coupled zirconium-doped α-FeO (Zr:FeO) and phosphating cobalt molybdate electrocatalyst (P-CoMoO) to ameliorate the above difficulties. The conductivity and carrier density of hematite significantly increase by Zr doping.
View Article and Find Full Text PDFAnal Chim Acta
May 2025
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, Guangxi, 530004, PR China; College of Life Science and Technology, Guangxi University, Nanning, Guangxi, 530004, PR China; Medical College of Guangxi University, Guangxi University, Nanning, Guangxi, 530004, PR China; Center for Instrumental Analysis, Guangxi University, Nanning, Guangxi, 530004, PR China. Electronic address:
Tryptophan (Trp) is an essential amino acid obtained from human diet. It is involved not only in de novo biosynthesis of proteins but also in complex metabolic pathways. Redox transformation of tryptophan is under-explored in comparison with kynurenine, serotonin and indole pyruvate pathways.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2025
Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China.
Hypercrosslinked polymers (HCPs) are the most promising porous organic polymers for large-scale production due to their easy preparation, extensive raw material source, good stability, and large specific surface area. However, due to the lack of extended conjugability, their application in fluorescence sensing is limited. Herein, three conjugated hypercrosslinked polymers (the conjugated HCPs: TPPDA-DMB, TDPAB-DMB, and MTDAB-DMB) were easily prepared by the Friedel-Craft arylation reactions with phenylenediamine or phenylenetriamine derivatives and p-dimethoxybenzene (DMB).
View Article and Find Full Text PDFFood Chem
March 2025
University of Lodz, Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, Electrochemistry@Soft Interface Team, Tamka 12, 91-403 Łódź, Poland.
This paper presents an electrochemical approach to quantitative and qualitative determination of hordenine (HODE) at the electrified liquid-liquid interface (eLLI). In this regard, we have employed ion transfer voltammetry (ITV) as an electroanalytical detection technique. The response of peak current values (positive or negative currents) increased linearly with HODE concentration in the studied concentration range from 28.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!