The study aimed to investigate the effect of the CD200R1 gene deletion on microglia activation and nigrostriatal dopamine neuron loss in the Parkinson's disease (PD) process. The CRISPR-Cas9 technology was applied to construct the CD200R1 mice. The primary microglia cells of wild-type and CD200R1 mice were cultured and treated with bacterial lipopolysaccharide (LPS). Microglia phagocytosis level was assessed by a fluorescent microsphere phagocytosis assay. PD mouse model was prepared by nigral stereotaxic injection of recombinant adeno-associated virus vector carrying human α-synuclein (α-syn). The changes in the motor behavior of the mice with both genotypes were evaluated by cylinder test, open field test, and rotarod test. Immunohistochemical staining was used to assess the loss of dopamine neurons in substantia nigra. Immunofluorescence staining was used to detect the expression level of CD68 (a key molecule involved in phagocytosis) in microglia. The results showed that CD200R1 deletion markedly enhanced LPS-induced phagocytosis by the microglial cells. In the mouse model of PD, CD200R1 deletion exacerbated motor behavior impairment and dopamine neuron loss in substantia nigra. Fluorescence intensity analysis results revealed a significant increase in CD68 expression in microglia located in the substantia nigra of CD200R1 mice. The above results suggest that CD200R1 deletion may further activates microglia by promoting microglial phagocytosis, leading to increased loss of the nigrostriatal dopamine neurons in the PD model mice. Therefore, targeting CD200R1 could potentially serve as a novel therapeutic target for the treatment of early-stage PD.
Download full-text PDF |
Source |
---|
Autophagy
March 2025
Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Cardiac dysfunction is a serious complication of sepsis-induced multiorgan failure in intensive care units and is characterized by an uncontrolled immune response to overwhelming infection. Type 2 innate lymphoid cells (ILC2s), as a part of the innate immune system, play a crucial role in the inflammatory process of heterogeneous cardiac disorders. However, the role of ILC2 in regulating sepsis-induced cardiac dysfunction and its underlying mechanism remain unknown.
View Article and Find Full Text PDFJ Biophotonics
March 2025
College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin, China.
Orthotopic tumor model has become an essential tool for studying drug biodistribution and tumor progression over time owing to the rapid development of in vivo imaging and immunological science. Dynamic diffuse fluorescence tomography (DFT) is a promising imaging modality that can map the three-dimensional distribution of a fluorophore within the object and capture the metabolic parameters of fluorophores in vivo. It has been widely applied in tumor detection, drug development, and efficacy evaluation.
View Article and Find Full Text PDFCell Biol Int
March 2025
Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.
Ovarian cancer (OC) is a deadly disease and lacks a precise marker for diagnosis worldwide. Our previous work has shown the overexpression of flotillin-1 (FLOT1) in OC tissue. To improve diagnostic sensitivity and accuracy, we evaluated the serum level of FLOT1 in OC patients and found that the serum concentration of FLOT1 as well as CA125 was significantly increased in patients with OC compared with healthy control (p < 0.
View Article and Find Full Text PDFAdv Mater
March 2025
School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China.
Diabetic wounds are a common complication of diabetes and pose a significant threat to human health. High glucose concentration in the wound remains a major obstacle, necessitating effective strategies to achieve sustained glucose consumption for synergistic diabetic wound therapy. In this study, an Au-based nanomaterial is developed that can adjust its morphology in different therapeutic processes.
View Article and Find Full Text PDFAdv Mater
March 2025
Department of Materials Science & Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
Electromyography (EMG) is a widely used diagnostic technique for evaluating the electrical activity of muscles and their controlling nerves. However, conventional surface electrodes with planar structures often suffer from low spatial resolution and suboptimal signal quality. Here, 3D-shaped, substrate-free, soft, and biocompatible liquid metal electrodes (LMe) are presented as a wearable interface for neuromuscular signal recording.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!