Melatonin Increased Autophagy Level to Facilitate Osteogenesis of Inflamed PDLSCs Through TMEM110 Signaling Pathways.

J Pineal Res

Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, China.

Published: March 2025

Periodontal ligament stem cells (PDLSCs) bring new hope to patients with poor periodontium recovery and impaired regeneration. However, the complex inflammatory microenvironment continually inhibits stem cell function and hinders stem cell therapy effectiveness. Melatonin is a naturally occurring neurohormone that participates in the regulation of a large spectrum of biological functions. We investigated the effect of melatonin on periodontium regeneration both in vitro and in vivo. The results showed that melatonin promoted periodontitis recovery and enhanced the osteogenesis of inflamed PDLSCs (Inf-PDLSCs) depending on concentrations. Further mechanistic exploration indicated that autophagy activation played a significant role in enhancing the osteogenic differentiation of Inf-PDLSCs after melatonin treatment. Additionally, melatonin-induced upregulation of TEME110 participated in the initiation of autophagy activation and enhancement of osteogenesis in Inf-PDLSCs. Collectively, the results of our study provide evidence that melatonin-mediated osteogenesis of Inf-PDLSCs is important for periodontal tissue regeneration. Moreover, melatonin as a therapeutic drug for periodontitis treatment deserves further investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.70039DOI Listing

Publication Analysis

Top Keywords

osteogenesis inflamed
8
inflamed pdlscs
8
stem cell
8
autophagy activation
8
osteogenesis inf-pdlscs
8
melatonin
6
melatonin increased
4
increased autophagy
4
autophagy level
4
level facilitate
4

Similar Publications

Melatonin Increased Autophagy Level to Facilitate Osteogenesis of Inflamed PDLSCs Through TMEM110 Signaling Pathways.

J Pineal Res

March 2025

Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shanxi Key Lab of Free Radical Biology and Medicine, School of Public Health, The Fourth Military Medical University, Xi'an, China.

Periodontal ligament stem cells (PDLSCs) bring new hope to patients with poor periodontium recovery and impaired regeneration. However, the complex inflammatory microenvironment continually inhibits stem cell function and hinders stem cell therapy effectiveness. Melatonin is a naturally occurring neurohormone that participates in the regulation of a large spectrum of biological functions.

View Article and Find Full Text PDF

Fibroblast-like synoviocytes (FLSs) and osteoclasts are central cells in the maintenance of joint homeostasis. Rheumatoid arthritis (RA) is a chronic inflammatory disease of joints that induces cytokine-activated FLSs and progressive bone erosion. Interactions between FLSs and other cells, such as T cells and B cells, have been recognized in the development of RA.

View Article and Find Full Text PDF

Infected alveolar bone defects pose challenging clinical issues due to disrupted intrinsic healing mechanisms. Thus, the employment of advanced biomaterials enabling the modulation of several aspects of bone regeneration is necessary. This study investigated the effect of multi-functional nanoparticles on anti-inflammatory/osteoconductive characteristics and bone repair in the context of inflamed bone abnormalities.

View Article and Find Full Text PDF

Aim: Cannabidiol (CBD), derived from the Cannabis sativa plant, exhibits benefits in potentially alleviating a number of oral and dental pathoses, including pulpitis and periodontal diseases. This study aimed to explore the impact of CBD on several traits of human dental pulp stem cells (hDPSC), such as their proliferation, apoptosis, migration and odonto/osteogenic differentiation.

Methodology: hDPSCs were harvested from human dental pulp tissues.

View Article and Find Full Text PDF

Wnt5a exacerbates pathological bone features and trabecular bone loss in curdlan-injected SKG mice via osteoclast activation.

BMB Rep

February 2025

Hanyang University Institute for Rheumatology Research (HYIRR), Seoul 04763; Department of Translational Medicine Science, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763; Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea.

Many studies on osteoblasts have suggested that Wnt5a plays a crucial role in excessive osteoblast activity, which is responsible for ectopic new bone formation, but research on osteoclasts in ankylosing spondylitis (AS) remains relatively limited. This study aimed to explore whether Wnt5a influences osteoclastmediated bone resorption in curdlan-injected SKG mice, a model that mimics AS. Compared to the Vehicle group, the Wnt5a treatment group exhibited statistically higher clinical arthritis scores and increased hindpaw thickness values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!