Acute hemorrhage death on battlefields, during clinical surgeries, and in major accidents is a widespread worldwide problem. Clay-based hemostatic materials have received considerable attention for their low cost and reliable clotting activity, especially in cases of severe bleeding, such as QuikClot, which is a kaolin-based hemostatic gauze that is preferred for battlefield resuscitation. However, the easy detachment of clay particles and the associated risk of thrombosis have seriously hindered the development of clay-based hemostatic materials. Here, inexpensive palygorskite (Pal) nanoclay was integrated into the collagen (COL) matrix by loading Ca in the clay and further using gallic acid (GA) to mediate the robust assembly of clay on the COL matrix. This targeted interfacial design is a simple and gentle method that effectively improves the dispersion of the Pal particles and reduces the risk of shedding. Unlike QuikClot where the aqueous solution was significantly turbid after 2 min of ultrasonic washing, the aqueous solution of the composite sponge (Ca-Pal-GA-COL) remained clear and was accompanied by 82.71% of the mass residue after 10 min of ultrasonic washing. The composite sponge also exhibited excellent antibacterial (87.93% inhibition rate of ), antioxidant, and tissue adhesion properties. Importantly, the Ca-Pal-GA-COL sponge exhibited less blood loss (632 mg) and a shorter hemostasis time (151 s) in a rat femoral artery hemorrhage model than the medical gauze (3850 mg and 299 s), pure COL sponge (1627 mg and 201 s), and Pal-COL sponge (1494 mg and 193 s) in a co-mingled mode, which are comparable to those of QuikClot (559 mg and 142 s). Furthermore, certain tissue adhesion properties render the Ca-Pal-GA-COL sponge more suitable than QuikClot for severe femoral artery active bleeding scenarios. Cellular experiments confirmed that the composite dressing has a certain biosafety.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c19209 | DOI Listing |
ACS Appl Mater Interfaces
March 2025
Key Laboratory of Leather Chemistry and Engineering (Ministry of Education), Sichuan University, Chengdu 610065, PR China.
Acute hemorrhage death on battlefields, during clinical surgeries, and in major accidents is a widespread worldwide problem. Clay-based hemostatic materials have received considerable attention for their low cost and reliable clotting activity, especially in cases of severe bleeding, such as QuikClot, which is a kaolin-based hemostatic gauze that is preferred for battlefield resuscitation. However, the easy detachment of clay particles and the associated risk of thrombosis have seriously hindered the development of clay-based hemostatic materials.
View Article and Find Full Text PDFACS Omega
March 2025
Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo namesti 5/542, 16000 Prague, Czech Republic.
The evolution of proteins is primarily driven by the combinatorial assembly of a limited set of pre-existing modules known as protein domains. This modular architecture not only supports the diversity of natural proteins but also provides a robust strategy for protein engineering, enabling the design of artificial proteins with enhanced or novel functions for various industrial applications. Among these functions, oligomerization plays a crucial role in enhancing protein activity, such as by increasing the binding capacity of antibodies.
View Article and Find Full Text PDFUnlabelled: Proper spindle assembly requires the Kinesin-14 family of motors to organize microtubules (MTs) into the bipolar spindle by cross-linking and sliding anti-parallel and parallel MTs through their motor and tail domains. How they mediate these different activities is unclear. We identified two MT binding domains (MBD1 and MBD2) within the Kinesin-14 XCTK2 tail and found that MBD1 MT affinity was weaker than MBD2.
View Article and Find Full Text PDFmRNA-based gene editing therapeutics offer the potential to permanently cure diseases but are hindered by suboptimal delivery platforms. Here, we devise a robust combinatorial chemistry for plug-and-play assembly of diverse biodegradable ionizable lipids and identify a lead candidate that produces superior lipid nanoparticles for various gene editing tools delivery . Our study highlights the utility of this synthetic approach and the generality of this platform for potent gene editing.
View Article and Find Full Text PDFACS Sens
March 2025
SENSOR Laboratory, Department of Information Engineering (DII), University of Brescia, Via D. Valotti 9, Brescia 25133, Italy.
The need for efficient and reliable gas sensors has grown significantly due to increasing industrial activities, transportation, and environmental pollution, posing serious risks to human health and the environment. Advanced sensor technologies are crucial for detecting these harmful gases at low concentrations with a high accuracy. Nickel oxide, a p-type metal oxide semiconductor, has emerged as a promising candidate for gas sensing applications owing to its unique and excellent structural, electronic, and catalytic properties along with its high chemical stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!