Pot size is a critical factor in plant growth experiments, influencing root architecture, nutrient uptake, and overall plant development as well as sensing of stress. In controlled environments, variation in pot size can impact phenotypic and molecular outcomes and may bias experimental results. Here, we investigated how pot size affects the root system architecture and molecular responses of two barley genotypes, the landrace BERE and the modern elite CONCERTO, through assessment of shoot and root traits and by using X-ray computed tomography complemented by transcriptomic and metabolomic analyses. The two genotypes showed distinctly different adaptations to changes in pot size. The landrace showed greater stability and adaptability with consistent root traits and enhanced accumulation of osmoprotectant metabolites across different pot sizes with respect to CONCERTO. Conversely, the elite line was more sensitive to pot size variations, particularly showing altered root architecture and transcriptomic responses. Overall, this study highlights the importance of selecting an appropriate pot size for plant growth experiments, particularly when focused on root traits, and highlights the importance of considering the physiological and molecular changes due to growth environment choice in experimental design in barley.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.15457DOI Listing

Publication Analysis

Top Keywords

pot size
24
root architecture
12
root traits
12
transcriptomic metabolomic
8
plant growth
8
growth experiments
8
size
7
root
7
pot
7
size matters
4

Similar Publications

Pot size is a critical factor in plant growth experiments, influencing root architecture, nutrient uptake, and overall plant development as well as sensing of stress. In controlled environments, variation in pot size can impact phenotypic and molecular outcomes and may bias experimental results. Here, we investigated how pot size affects the root system architecture and molecular responses of two barley genotypes, the landrace BERE and the modern elite CONCERTO, through assessment of shoot and root traits and by using X-ray computed tomography complemented by transcriptomic and metabolomic analyses.

View Article and Find Full Text PDF

This study demonstrated the effectiveness of enriched anoxic methanotrophic consortium augmentation in reducing methane (CH) emissions from rice cultivation while improving soil fertility and rice productivity. The enriched consortium from cattle farm effluent, dominated by Acinetobacter (65.5%) and containing both types I (Methylosarcina, Methylomagnum, and Methyloversatilis) and II (Methylocystis) methanotrophs, exhibited high methane oxidation rates (V 45.

View Article and Find Full Text PDF

This study thoroughly explores the synthesis, characterization, and antimicrobial efficacy of three α-aminophosphonate-chitosan (α-AP-Cs) compounds and their nano‑silver functionalized organic hybrids. α-AP-Cs derivatives (CU, CT and CSC) were synthesized via an in-situ, one-pot reaction using chitosan and triphenyl-phosphite, with different carbamide-glutaraldehyde crosslinkers; urea-glutaraldehyde, thiourea-glutaraldehyde and semicarbazide-glutaraldehyde, respectively. Subsequently, their corresponding α-AP-Cs‑silver nanocomposites (CU-AgNPs, CT-AgNPs and CSC-AgNPs) were synthesized via solid-state approach.

View Article and Find Full Text PDF

In order to realize efficient detection of Congo red, fluorescence analytical method were adopted and investigated systematically. Based on the superior properties of papain and excellent performance of copper nanoclusters, papain stabilized copper nanoclusters (Cu NCs@PP) with blue fluorescence were rapidly synthesized via a one-pot method. The spherical Cu NCs@PP uniformly dispersed with an average size of about 2.

View Article and Find Full Text PDF

Macroscopically sized supraparticles (SPs) are emerging as cutting-edge materials for industrial applications because of their unique properties unachievable for their nano-building blocks, but their effective methods are lacking. Here, we develop a conceptually novel strategy to assemble binary or ternary nanoparticles (NPs) within compartments of droplets through electrostatic interactions, making it possible to facilely fabricate millimeter-sized multicomponent ionic supraparticles (ISPs). The assembled ISPs possess unexpectedly high mechanical strength (50 N per bead), being amenable to practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!