Fifteen years of ChEMBL and its role in cheminformatics and drug discovery.

J Cheminform

European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB101SD, UK.

Published: March 2025

In October 2024 we celebrated the 15th anniversary of the first launch of ChEMBL, Europe's most impactful, open-access drug discovery database, hosted by EMBL's European Bioinformatics Institute (EMBL-EBI). This is a good moment to reflect on ChEMBL's history, the role that ChEMBL plays in Cheminformatics and Drug Discovery as well as innovations accelerated using data extracted from it. The review closes by discussing current challenges and possible directions that need to be taken to guarantee that ChEMBL continues to be the pioneering resource for highly curated, open bioactivity data on the European continent and beyond.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13321-025-00963-zDOI Listing

Publication Analysis

Top Keywords

drug discovery
12
cheminformatics drug
8
fifteen years
4
chembl
4
years chembl
4
chembl role
4
role cheminformatics
4
discovery october
4
october 2024
4
2024 celebrated
4

Similar Publications

Privileged natural product compound classes for anti-inflammatory drug development.

Nat Prod Rep

March 2025

Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, 18 Science Drive 4, 117543, Singapore.

Covering: up to early 2025Privileged compound classes of anti-inflammatory natural products are those where there are many reported members that possess anti-inflammatory properties. The identification of these classes is of particular relevance to drug discovery, as they could serve as valuable starting points in developing effective and safe anti-inflammatory agents. The privileged compound classes of natural products include the polyphenols, coumarins, labdane diterpenoids, sesquiterpene lactones, isoquinoline and indole alkaloids, each offering a variety of molecular scaffolds and functional groups that enable diverse interactions with biological targets.

View Article and Find Full Text PDF

Drug discovery pipelines rely on the availability of isolated primary hepatocytes for investigating potential hepatotoxicity prior to clinical application. These hepatocytes are isolated from livers rejected for transplantation and subsequently cryopreserved for later usage. The gold standard cryopreservation technique, slow-freezing, is a labor-intensive process with significant poststorage viability loss.

View Article and Find Full Text PDF

Introduction: Melanoma, a highly aggressive form of skin cancer, and Parkinson's disease (PD), a progressive neurodegenerative disorder, have been epidemiologically linked, showing a positive association that suggests a shared etiology. This association implies that individuals with one condition may have an increased risk of developing the other. However, the specific molecular mechanisms underlying this relationship remain unclear.

View Article and Find Full Text PDF

Background: The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 interacts with the angiotensin-converting enzyme 2 (ACE2) receptor in humans. To date, numerous SARS-CoV-2 variants, particularly those involving mutations in the RBD, have been identified. These variants exhibit differences in transmission, pathogenicity, diagnostics, and vaccine efficacy.

View Article and Find Full Text PDF

Identification of novel drug targets is a key component of modern drug discovery. While antimalarial targets are often identified through the mechanism of action studies on phenotypically derived inhibitors, this method tends to be time- and resource-consuming. The discoverable target space is also constrained by existing compound libraries and phenotypic assay conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!