Rationale: There are several approaches to select the optimal positive end-expiratory pressure (PEEP), resulting in different PEEP levels. The impact of different PEEP settings may extend beyond respiratory mechanics, affecting pulmonary hemodynamics.

Objectives: To compare PEEP levels obtained with three titration strategies-(i) highest respiratory system compliance (C), (ii) electrical impedance tomography (EIT) crossing point; (iii) positive end-expiratory transpulmonary pressure (P)-in terms of regional respiratory mechanics and pulmonary hemodynamics.

Methods: Experimental studies in two porcine models of acute lung injury: (I) bilateral injury induced in both lungs, generating a highly recruitable model (n = 37); (II) asymmetrical injury, generating a poorly recruitable model (n = 13). In all experiments, a decremental PEEP titration was performed monitoring P, EIT (collapse, overdistention, and regional ventilation), respiratory mechanics, and pulmonary and systemic hemodynamics.

Measurements And Main Results: PEEP titration methods resulted in different levels of median optimal PEEP in bilateral lung injury: 14(12-14) cmHO for C, 11(10-12) cmHO for EIT, and 8(8-10) cmHO for P, p < 0.001. Differences were less pronounced in asymmetrical lung injury. PEEP had a quadratic U-shape relationship with pulmonary artery pressure (R = 0.94, p < 0.001), right-ventricular systolic transmural pressure, and pulmonary vascular resistance. Minimum values of pulmonary vascular resistance were found around individualized PEEP, when ventilation distribution and pulmonary circulation were simultaneously optimized.

Conclusions: In porcine models of acute lung injury with variable lung recruitability, both low and high levels of PEEP can impair pulmonary hemodynamics. Optimized ventilation and hemodynamics can be obtained simultaneously at PEEP levels individualized based on respiratory mechanics, especially by EIT and esophageal pressure.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13054-025-05325-7DOI Listing

Publication Analysis

Top Keywords

lung injury
12
respiratory mechanics
12
mechanics pulmonary
12
acute lung
8
positive end-expiratory
8
peep levels
8
recruitable model
8
peep titration
8
peep
7
injury
5

Similar Publications

Acute kidney injury after lung transplantation, incidence, risk factors, and effects: A Swedish nationwide study.

Acta Anaesthesiol Scand

April 2025

Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Sciences at the Sahlgrenska Academy, University of Gothenburg and Section for Cardiothoracic Anesthesia and Intensive Care, Sahlgrenska University Hospital, Gothenburg, Sweden.

Background: Acute kidney injury (AKI) is a serious complication after lung transplantation, but the reported incidence varies in the literature. No data on AKI have been published from the Swedish lung transplantation program.

Methods: The aim of our study was to investigate the incidence, perioperative risk factors, and effects of early postoperative acute kidney injury (Kidney Disease Improving Global Outcomes [KDIGO] criteria) after lung transplantation.

View Article and Find Full Text PDF

The role of mA modification during macrophage metabolic reprogramming in human diseases and animal models.

Front Immunol

March 2025

Department of Laboratory Medicine, Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.

Macrophage metabolic reprogramming refers to the process by which macrophages adjust their physiological pathways to meet survival and functional demands in different immune microenvironments. This involves a range of metabolic pathways, including glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and cholesterol transport. By modulating the expression and activity of key enzymes and molecules within these pathways, macrophages can make the transition between pro- and anti-inflammatory phenotypes, thereby linking metabolic reprogramming to inflammatory responses and the progression of several diseases, such as atherosclerosis, inflammatory bowel disease (IBD), and acute lung injury (ALI).

View Article and Find Full Text PDF

lung perfusion: recent advancements and future directions.

Front Immunol

March 2025

Duke Ex Vivo Organ Laboratory, Department of Surgery, Duke University Medical Center, Durham, NC, United States.

Ex-vivo lung perfusion (EVLP) has emerged as a transformative technique in lung transplantation, offering a solution for evaluating and rehabilitating donor lungs that would otherwise be deemed unsuitable. This review article examines the significant advancements in EVLP technology and its application in clinical practice. We discuss the criteria for selection and rehabilitation of donor lungs, emphasizing the use of EVLP for lungs with compromised function due to factors like prolonged ischemic time and donor smoking history.

View Article and Find Full Text PDF
Article Synopsis
  • The respiratory system is vital for oxygen absorption and carbon dioxide expulsion, helping to maintain the body's acid-base balance and metabolic stability.
  • The outbreak of COVID-19 has highlighted the need for new treatments for respiratory diseases, leading to renewed interest in Tanshinone IIA, a bioactive compound traditionally used for heart diseases.
  • Research shows Tanshinone IIA has various therapeutic effects, including anti-inflammatory and anti-cancer properties, and it shows promise in treating conditions like asthma and lung cancer, making it a valuable focus for future studies.
View Article and Find Full Text PDF

Respiratory diseases rank among the foremost causes of mortality and disability globally, with long-term exposure to environmental pollutants playing a critical role in their onset and progression. Despite this, the underlying mechanisms and effective targeted treatments for these disorders remain poorly understood, highlighting an urgent need for focused research. Cell death, a programmed cellular response to external harmful stimuli, including ferroptosis-a recently identified form of iron-dependent programmed cell death-emerges as a pivotal process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!