Background: Freshwater megafishes are among some of the most commercially and ecologically important aquatic organisms yet are disproportionately threatened with range and population reduction. Anthropogenic alterations of rivers influencing migrations are among the most significant causes for these declines. However, migratory fishes do not always respond similarly to movement barriers and thus it is necessary to develop models to predict movements of freshwater migratory fishes in the face of anthropogenic alteration. Predicting movement of freshwater fishes is often investigated using statistical packages. However, empirical studies assessing these packages have led to mixed results, questioning its applicability to all taxa. We argue that spatial, temporal, and environmental attributes are more influential for movement of a migratory megafish, the Alligator Gar (Atractosteus spatula), than the current parameters explored in a globally relevant fish movement model.
Methods: This study explored two independent mobile telemetry datasets investigating Alligator Gar movement on the Brazos and Trinity rivers. Environmental associations were investigated to predict Alligator Gar displacement and dispersal using generalized additive models, generalized linear models, and model selection. Leptokurtosis of Alligator Gar populations was also assessed. Predictability of the movement model was tested by comparing observed to model derived stationary and mobile components making up a leptokurtic movement distribution.
Results: Our study suggests that current and antecedent measures of discharge and water temperature are positively correlated with Alligator Gar displacement and dispersal. However, these patterns are only detectable when monthly relocation intervals are explored rather than seasonal scales. Leptokurtosis was observed in both Alligator Gar populations. However, movement was normally distributed (i.e., mesokurtic) under tracking events following high flood pulses. Additionally, predicted Alligator Gar movement was significantly farther under modeled values compared to observed values, in part because the species undergoes cyclical migrations for reproduction that are sensitive to water temperature and discharge.
Discussion: In conclusion, this study provides an alternative framework to assess the movement patterns of migratory fishes, which could be tested on additional freshwater fishes, and suggests that assessing spatial, environmental, and temporal processes simultaneously are necessary to capture the complexities of fish movement which currently are unavailable for the movement model we investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s40462-025-00544-7 | DOI Listing |
Mov Ecol
March 2025
Department of Ecology and Conservation Biology, Texas A&M University, 2258 TAMU, College Station, TX, 77843, USA.
Background: Freshwater megafishes are among some of the most commercially and ecologically important aquatic organisms yet are disproportionately threatened with range and population reduction. Anthropogenic alterations of rivers influencing migrations are among the most significant causes for these declines. However, migratory fishes do not always respond similarly to movement barriers and thus it is necessary to develop models to predict movements of freshwater migratory fishes in the face of anthropogenic alteration.
View Article and Find Full Text PDFJ Trace Elem Med Biol
February 2025
The Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States.
Industrial expansion and population growth have lowered water quality, polluting aquatic ecosystems world-wide. Metal pollution in the rivers across the United States are a major health concern. The level of metal contamination in fish from the Lower Mississippi River Basin and their threat to public health were last evaluated 20 years ago.
View Article and Find Full Text PDFSci Data
December 2024
Key Laboratory of Wetland Ecology and Environment & Heilongjiang Xingkai Lake Wetland Ecosystem National Observation and Research Station, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
Given the aggressive nature and robust survival capabilities of the alligator gar (Atractosteus spatula), if it was to exist in a new environment as an invasive species, it could cause significant disruption to the invaded ecosystem. Building on the continuity and completeness of the existing draft genome were not optimal, this study has updated a high-quality genome of the alligator gar at the chromosome level, which was assembled using Oxford Nanopore Technology and chromatin interaction mapping (Hi-C) sequencing techniques. In summary, the alligator gar genome in this study was 1.
View Article and Find Full Text PDFSci Rep
May 2024
Lanzhou Vocational Technical College, School of Information engineering, Lanzhou, 730070, China.
When using advanced detection algorithms to monitor alligator gar in real-time in wild waters, the efficiency of existing detection algorithms is subject to certain limitations due to turbid water quality, poor underwater lighting conditions, and obstruction by other objects. In order to solve this problem, we developed a lightweight real-time detection network model called ARD-Net, from the perspective of reducing the amount of calculation and obtaining more feature map patterns. We introduced a cross-domain grid matching strategy to accelerate network convergence, and combined the involution operator and dual-channel attention mechanism to build a more lightweight feature extractor and multi-scale detection reasoning network module to enhance the network's response to different semantics.
View Article and Find Full Text PDFJ Comp Physiol B
April 2024
University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
Many teleosts possess a unique set of respiratory characteristics allowing enhanced oxygen unloading to the tissues during stress. This system comprises three major components: highly pH sensitive haemoglobins (large Bohr and Root effects), rapid red blood cell (RBC) intracellular pH (pHi) protection, and a heterogeneous distribution of membrane-bound plasma-accessible carbonic anhydrase (paCA; absence in the gills). The first two components have received considerable research effort; however, the evolutionary loss of branchial paCA has received little attention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!