Background: In developed nations, myocardial infarction (MI) is one of the main causes of morbidity and mortality, resulting in a significant economic burden and becoming a global public health problem. C1q/tumor necrosis factor-related protein 9 (CTRP9) is a secreted protein comprising a variable domain, a collagenous region, and a C-terminal trimerizing globular C1q (gC1q) domain. In vivo, the full-length CTRP9 (fCTRP9) can be cleaved into the globular domain of CTRP9 (gCTRP9). Here, we tested the cardio-protective impacts of fCTRP9, gCTRP9, and N-terminal domain, including the variable and collagenous domain, of CTRP9 (nCTRP9) in the context of MI.

Methods: Studies comparing the protective properties of fCTRP9 and gCTRP9 against MI in mice hearts were performed both in vitro and in vivo. The role of matrix metalloproteinase-9 (MMP9) in CTRP9 cleavage was examined, and the effects of different CTRP9 domains on cardiac fibrosis and cardiac fibroblast (CF) activation were investigated.

Results: gCTRP9 exerted better protective effects than fCTRP9 against MI, demonstrating superior anti-apoptotic and anti-fibrotic properties. fCTRP9 was cleaved by MMP9, resulting in gCTRP9 and nCTRP9. MMP9 overexpression enhanced the cardioprotective effects of fCTRP9, while nCTRP9 supplementation aggravated cardiac fibrosis in MI mice. Mechanistically, nCTRP9 activated CFs via an increase in Rap1 expression and MEK 1/2 and ERK1/2 phosphorylation.

Conclusions: Different domains of CTRP9 have distinct cardioprotective effects. gCTRP9 shows beneficial effects, while nCTRP9 promotes cardiac fibrosis. These findings highlight the importance of CTRP9 in cardiac function regulation and suggest prospective therapeutic options for MI treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12967-025-06274-zDOI Listing

Publication Analysis

Top Keywords

domain ctrp9
12
cardiac fibrosis
12
ctrp9
9
n-terminal domain
8
promotes cardiac
8
cardiac fibroblast
8
fibroblast activation
8
myocardial infarction
8
fctrp9 cleaved
8
fctrp9 gctrp9
8

Similar Publications

Background: In developed nations, myocardial infarction (MI) is one of the main causes of morbidity and mortality, resulting in a significant economic burden and becoming a global public health problem. C1q/tumor necrosis factor-related protein 9 (CTRP9) is a secreted protein comprising a variable domain, a collagenous region, and a C-terminal trimerizing globular C1q (gC1q) domain. In vivo, the full-length CTRP9 (fCTRP9) can be cleaved into the globular domain of CTRP9 (gCTRP9).

View Article and Find Full Text PDF

C1q/Tumor Necrosis Factor-Related Protein 9: Basics and Therapeutic Potentials.

Front Physiol

March 2022

Shaanxi Key Laboratory of Ischemic Cardiovascular Diseases, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.

C1q/tumor necrosis factor-related protein 9 (CTRP9) is a newly discovered adipokine that is the closest paralog of adiponectin. Proteolytic cleavage of CTRP9 leads to the release of the globular domain (gCTRP9), which serves as the major circulating subtype. After binding with adiponectin receptor 1 (AdipoR1) and -cadherin, CTRP9 activates various signaling pathways to regulate glucose and lipid metabolism, vasodilation and cell differentiation.

View Article and Find Full Text PDF

C1q/tumour necrosis factor-related protein-9 aggravates lipopolysaccharide-induced inflammation via promoting NLRP3 inflammasome activation.

Int Immunopharmacol

March 2022

Department of General Practice, Qilu Hospital, Cheeloo college of medicine, Shandong University, Jinan, Shandong, 250012, China. Electronic address:

The NLRP3 inflammasome plays a vital role in inflammation by increasing the maturation of interleukin-1β (IL-1β) and promoting pyroptosis. Given that C1q/tumour necrosis factor-related protein-9 (CTRP9) has been shown to be involved in diverse inflammatory diseases, we sought to assess the underlying impact of CTRP9 on NLRP3 inflammasome activation. In vitro, macrophages isolated from murine peritonea were stimulated with exogenous CTRP9, followed by lipopolysaccharide (LPS) and adenosine 5'-triphosphate (ATP).

View Article and Find Full Text PDF

C1q/tumor necrosis factor-related protein 9 (CTRP9) has been identified as a novel anti-inflammatory factor that participates in numerous pathological conditions. However, whether CTRP9 participates in the regulation of osteoarthritis has not been studied. This work sought to determine the possible role of CTRP9 in osteoarthritis using an in vitro model, namely interleukin-1β (IL-1β)-stimulated chondrocytes.

View Article and Find Full Text PDF

Role of miR-145-5p/ CD40 in the inflammation and apoptosis of HUVECs induced by PM.

Toxicology

December 2021

Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China. Electronic address:

Fine particulate matter (PM) exposure can cause the injury of vascular endothelial cells by inflammatory response. CD40 works in inflammation of endothelial cells and it may be regulated by the miRNAs. This study aimed to clarify the role and mechanism of CD40 and miR-145-5p in PM-induced injury of human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!