Background: Major depressive disorder is a significant global cause of disability, particularly among adolescents. The dopamine system and nearby neuroinflammation, crucial for regulating mood and processing rewards, are central to the frontostriatal circuit, which is linked to depression. This study aimed to investigate the effect of post-weaning isolation (PWI) on depression in adolescent mice, with a focus on exploring the involvement of microglia and dopamine D1 receptor (D1R) in the frontostriatal circuit due to their known links with mood disorders.
Results: Adolescent mice underwent 8 weeks of PWI before evaluating their depression-like behaviors and the activation status of microglia in the frontostriatal regions. Selective D1-like dopamine receptor agonist SKF-81,297 was administered into the medial prefrontal cortex (mPFC) of PWI mice to assess its antidepressant and anti-microglial activation properties. The effects of SKF-81,297 on inflammatory signaling pathways were examined in BV2 microglial cells. After 8 weeks of PWI, female mice exhibited more severe depression-like behaviors than males, with greater microglial activation in the frontostriatal regions. Microglial activation in mPFC was the most prominent among the three frontostriatal regions examined, and it was positively correlated with the severity of depression-like behaviors. Female PWI mice exhibited increased expression of dopamine D2 receptors (D2R). SKF-81,297 treatment alleviated depression-like behaviors and local microglial activation induced by PWI; however, SKF-81,297 induced these alterations in naïve mice. In vitro, SKF-81,297 decreased pro-inflammatory cytokine release and phosphorylations of JNK and ERK induced by lipopolysaccharide, while in untreated BV2 cells, SKF-81,297 elicited inflammation.
Conclusions: This study highlights a sex-specific susceptibility to PWI-induced neuroinflammation and depression. While targeting the D1R shows potential in alleviating PWI-induced changes, further investigation is required to evaluate potential adverse effects under normal conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1186/s12993-025-00269-y | DOI Listing |
Behav Brain Funct
March 2025
Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
Background: Major depressive disorder is a significant global cause of disability, particularly among adolescents. The dopamine system and nearby neuroinflammation, crucial for regulating mood and processing rewards, are central to the frontostriatal circuit, which is linked to depression. This study aimed to investigate the effect of post-weaning isolation (PWI) on depression in adolescent mice, with a focus on exploring the involvement of microglia and dopamine D1 receptor (D1R) in the frontostriatal circuit due to their known links with mood disorders.
View Article and Find Full Text PDFJ Ethnopharmacol
March 2025
School of Life Science and Engineering, Southwest Jiaotong University, Cheng du, China. Electronic address:
Ethnopharmacological Relevance: Changpu San (CPS) is a traditional Chinese medicine (TCM) formula historically used to treat symptoms resembling depression. However, its antidepressant effects and underlying mechanisms remain unclear.
Aim Of The Study: This study aims to evaluate CPS's antidepressant effects and elucidate its mechanisms by combining network pharmacology with untargeted metabolomics.
Eur J Nutr
March 2025
Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
Purpose: Parkinson's disease (PD) disrupts the regulation of neurotransmitters in the brain, causing patients to experience not only motor symptoms but also non-motor symptoms such as depression. 6-shogaol (6S) is a potential neuro-nutraceutical derived from ginger, and is known to ameliorate motor symptoms by suppressing inflammation in PD mice. In this study, we investigated whether 6S can attenuate motor symptoms and depression-like behaviors through neurotransmitter regulation and to elucidate which neurotransmitters are intimately correlated with these effects.
View Article and Find Full Text PDFUnlabelled: We tested the hypothesis that environmental enrichment (EE) can attenuate early-onset cognitive decline in a stress-hyperresponsive rat strain. The novel genetic model, the Wistar Kyoto More Immobile (WMI) inbred rat strain demonstrates increased stress reactivity and enhanced depression-like behavior compared to its nearly isogenic control, the Wistar Kyoto Less Immobile strain (WLI). Middle-aged (12 months) WMI females exhibited diminished fear, and spatial memory in the contextual fear conditioning and Morris Water Maze paradigms, respectively, compared to young animals (6 months) of both strains and to middle-aged WLIs.
View Article and Find Full Text PDFBrain Behav
March 2025
The Second Department of Neurology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China.
Background: Hydroxysafflor yellow A (HSYA), the main active ingredient in safflower, possesses antioxidant and anti-inflammatory activities. We confirmed in our previous study that HSYA exerts antidepressant effects, but further investigation is needed to uncover the exact mechanism. Herein, we aimed to explore the antidepressant effects of HSYA based on microglial activation and ferroptosis studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!