Background: Inhalation of combustion-derived nanoparticles may contribute to the development or exacerbation of inflammatory lung diseases by direct interaction with neutrophilic granulocytes. Earlier studies have shown that exposure of human neutrophils to carbon nanoparticles ex vivo causes a prolongation of cellular life by the reduction of apoptosis rates. Accordingly, reduced neutrophil apoptosis rates were observed in neutrophils from bronchoalveolar lavages from carbon nanoparticle-exposed animals. The current study describes molecular and cellular modes of action responsible for this proinflammatory effect.

Results: Experiments with human blood neutrophils or neutrophil-like differentiated HL-60 cells exposed to carbon nanoparticles revealed dose dependent reduction of apoptosis rates. In both experimental systems, intracellular reactive oxygen species proved to be causally linked to this endpoint. Among the human samples, only primed cells from donors with slightly elevated proinflammatory plasma factors responded by delayed apoptosis. These neutrophils are characterized by an immunophenotype (CD16 CD62L) which is also observed in inflammatory lung diseases. Upon exposure to carbon nanoparticles these cells are further activated in an oxidant dependent manner. This activation appears to be linked to reduced apoptosis as samples with unchanged apoptosis rates were also not responding at this level. As reactive oxygen species triggered by carbon nanoparticles are known to cause membrane rearrangements, lipid raft structures were investigated by ganglioside M1 staining. Exposure of neutrophils resulted in a reduction of raft structures which could be prevented by an antioxidant strategy. The destruction of lipid rafts by depleting cholesterol also caused an activated immunophenotype and delayed apoptosis, indicating that membrane rearrangements after carbon nanoparticle exposure in primed neutrophils are responsible for cell activation and delayed apoptosis.

Conclusions: The antiapoptotic reactions observed in two independent experimental systems, differentiated neutrophil-like HL-60 cells and primed neutrophils, may be considered as additional proinflammatory effect of inhaled combustion-derived nanoparticles. Particularly in chronic diseases, which are characterized by neutrophilic lung inflammation, this effect can be expected to contribute to the deterioration of the health status. The data describe a mode of action in which intracellular reactive oxygen species cause membrane rearrangements that are responsible for neutrophil activation and delayed apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12989-025-00621-0DOI Listing

Publication Analysis

Top Keywords

carbon nanoparticles
20
delayed apoptosis
16
apoptosis rates
16
hl-60 cells
12
reactive oxygen
12
oxygen species
12
membrane rearrangements
12
apoptosis
9
neutrophil-like hl-60
8
neutrophilic granulocytes
8

Similar Publications

Advancing Tumor Microenvironment Analysis: A Fluorescence Nanosystem for Caspase-1 Monitoring and Synergistic Therapy.

Anal Chem

March 2025

College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun 130012, China.

The lack of precise, real-time analytical tools for monitoring tumor microenvironment changes during treatment hinders advancements in integrated diagnostic and therapeutic platforms. Traditional caspase-3 monitoring strategies are limited by their inability to address drug resistance and newly discovered apoptotic pathways, leading to reduced accuracy and practicality. To overcome these limitations, we developed a fluorescence-based "Trojan horse" nanosystem, PFpR@CM, featuring high-sensitivity Caspase-1 detection, tumor-targeted delivery, and photothermal therapy.

View Article and Find Full Text PDF

Single -crystal sodium nickel phosphate nanoparticles as supercapacitor cathodes with ultra-high capacitance and rate-performance.

Nanoscale

March 2025

Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Ministry of Education, Xi'an, 710062, P. R. China.

Sodium nickel phosphate (NaNiPO, NNP) is an attractive cathode material for high performance supercapacitors due to its abundance of active sites for oxidation/reduction, highly stable framework structure, . However, its disadvantages of low electric conductivity, disturbances of its impure crystalline phase, and the numerous pores/gaps produced by agglomerated polycrystalline morphologies in this cathode often limit its electrochemical performance. Herein, single-crystalline NNP rod-like nanoparticles with high phase purity have been prepared by spontaneous combustion combined with subsequent solid-phase calcination.

View Article and Find Full Text PDF

The development of new materials capable of converting carbon dioxide (CO) into value-added products has emerged as a crucial strategy in addressing global climate change and promoting sustainable industrial practices. As CO emissions continue to rise, innovative catalytic systems that facilitate its utilization as a C1 carbon source are gaining significant attention. Such advancements not only contribute to carbon capture and utilization (CCU) efforts but also support the transition toward greener chemical processes by reducing dependence on fossil-derived feedstocks.

View Article and Find Full Text PDF

Background: Inhalation of combustion-derived nanoparticles may contribute to the development or exacerbation of inflammatory lung diseases by direct interaction with neutrophilic granulocytes. Earlier studies have shown that exposure of human neutrophils to carbon nanoparticles ex vivo causes a prolongation of cellular life by the reduction of apoptosis rates. Accordingly, reduced neutrophil apoptosis rates were observed in neutrophils from bronchoalveolar lavages from carbon nanoparticle-exposed animals.

View Article and Find Full Text PDF

Engineering fluorescent carbon dot sensor with rare earth europium for the detection of uranium (VI) ion in vivo.

Mikrochim Acta

March 2025

Hunan Key Laboratory of Typical Environment Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, People's Republic of China.

Three types of carbon dots were synthesized using the same precursor (folic acid and europium nitrate) via different preparation methods (doping and direct coordination). A comprehensive comparison and analysis of the morphology, surface groups, and optical properties of the prepared carbon dots (CD), europium-doped carbon dots (CD-Eu), and europium-functionalized carbon dots (CD@Eu) were conducted. Moreover, due to the higher quantum yield, excellent stability, and outstanding selectivity for UO exhibited by CD-Eu, we selected CD-Eu as the probe for subsequent applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!